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Let us consider the interval [u,, = 0, ua] where the minimiza-
tion in (11) is desired, and suppose that it is narrow enough to make
it possible that both F(u, ) and F'(u), defined in Section IIL.B, can
be accurately approximated by the first three terms of their Taylor ex-
pansion (around the direction of maximum radiation, that is, v = 0).
Accordingly, the minimization in (11) can be achieved by constraining
F(u, ) and F(u), along with their first and second derivatives, to be
equal in v = 0. By doing so, we easily obtain condition (12). We only
note that the expression of F(u, ) can be obtained by simplifying
(14) to the case of one single ring, whereas F(w) comes by restricting
to the interval [r;, r.] the integration domain of the function f () re-
called above.

We stress that enforcement of the condition involving the second
derivatives (not used in the 1D DA in [14]) is necessary in this 2D case
because the first derivatives of F'(u, ¢) and F (u) are identically equal
to zero in v = (. Moreover, by relaxing the approximation in (14) an
additional term (proportional, through the factor 2/3?, to the second
derivative, in v = 0, of the element pattern) would appear at the right
hand side of (12). However, such an additional term turned out to play
anegligible role in the performances of the final array, thus confirming
that the approximation in (14) is very sound in our case of interest.
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A Note on the Construction of Synthetic Basis Functions
for Antenna Arrays
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Abstract—Construction of synthetic basis functions (SBFs) for analyzing
the radiation problems of antenna arrays is discussed. The SBFs of a block
are generated from two separate solution spaces, with one space to account
for the effect of the feeding voltages, and the other space to account for
the responses of the block to incident electromagnetic fields from its envi-
ronment. Singular value decomposition (SVD) method is used to extract
the characteristic modes of the block. Examples show that using SBF's con-
structed in this way may cause better efficiency.

Index Terms—Domain decomposition method, singular-value decompo-
sition, synthetic basis function.

1. INTRODUCTION

The rigorous analysis of radiation problems involving large antenna
arrays becomes possible [1], [2] owing to the development of inno-
vative numerical techniques in computational electromagnetics. The
target of many of these techniques is to reduce the severe computa-
tional cost imposed by the method of moments (MoM) [3] when ana-
lyzing electrically large problems. In the conventional implementation
of MoM, a typical spatial sampling rate of A/10 is usually required for
discretization if low order basis functions, such as Rao-Wilton-Glisson
(RWG) basis functions for surfaces [4] or piece-wire linear functions
for wires, are used to expand the induced currents. The direct solu-
tion of the linear matrix system is very expensive for electrically large
problems. Some approaches to overcome this difficulty have been pro-
posed, of which the most important one is the fast multipole method
(FMM) [5] and its extension—the multilevel fast multipole algorithm
(MLFMA). In these methods, only the near-field terms of the coupling
matrix need to be stored and fast matrix-vector production in the iter-
ation process is achieved by performing factorization of the Green’s
function. The computational complexity is reduced to O(N log N) in
the multilevel fast multipole algorithm. A lot of techniques utilize this
efficient matrix-vector production method in the iteration solution of
large systems, such as the complex mutipole beam approach (CMBA)
[6], the impedance matrix localization (IML) technique [7], the adap-
tive method (AIM) [8] or the multilevel matrix decomposition algo-
rithm (MLMDA) [9].

Another branch of methodology for rigorously analyzing large scale
system focuses on reducing the number of unknowns involved in the
final linear system. Generally speaking, much less unknowns are re-
quired to solve in methods adopting entire domain basis functions than
in methods adopting subdomain basis functions. However, entire do-
main basis functions are conventionally continuous eigen functions
corresponding to some kind of boundary value problems of the con-
cerned system, which are usually difficult to solve for complicated
system. A natural consideration is to find a kind of basis functions that
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bear the following features: (1) they can efficiently express the elec-
tromagnetic characteristics of the system; (2) they are easy to obtain
in a routine way. Apparently, basis functions defined on middle-sized
domains may be good choices. Usually, these kinds of basis functions
can be aggregated from low order basis functions, such as RWGs. It
is possible that two domains may share a common ground plane, sub-
strates, or may be connected by thin PEC strips. In these cases, half
basis functions, such as half RWGs (HRWGs), have to be used for those
bases that are cut apart by the interface between the two domains. Each
middle-sized domain basis function corresponds to a characteristic so-
lution of the concerned domain under typical electromagnetic situa-
tions. The methods using macro-basis functions (MBFs), characteristic
basis functions (CBFs) [11] and synthetic basis functions (SBFs) [10],
[12] belong to this category. The SBF method is perhaps more versatile
since each SBF, obtained by SVD process, is actually a discrete eigen
function of a solution space to the concerned domain, which can be re-
garded as a block-wise entire domain basis function expressed by low
order basis functions. In SBF method, if the solution space is properly
chosen, a very small number of SBFs are enough to describe the elec-
tromagnetic characteristics of the domain. Therefore, high compression
rate of number of unknowns is achievable.

In this paper, the effect of using different solution space is discussed.
We use antenna arrays as numerical examples to show that better effi-
ciency may be achievable if we construct the SBFs using more ade-
quately defined solution spaces.

II. CONSTRUCTION OF SBFs

The radiation problem of a PEC antenna occupying a surface S is
often analyzed based on the electric field integral equation (EFIE),

. - 1 = =
W/ {J+k—2V(V-J)gdS] = BoPm (D)
NEAS:

tan

which can be compactly written as

LLI(7)} = Eo(Mian, 7€S )
where L is a linear operator and Eq(7) is the imposed electric field.
The EFIE is discretized to get a linear system

(2111 = [V]. ©)

Consider an antenna array with M elements. We use N, low order
basis functions to expand the current distribution on each element.
Therefore, the excitation vector [V] and the current coefficient vector
[I] are both M N, column vectors. The size of the impedance matrix is
M N, x M N,, with entries calculated by inner products

Zpy = {fo LT 1) @)

where f;, is the pth basis function, and p, ¢ = 1,2,..., M N,.

Apply domain decomposition method to antenna array shown in
Fig. 1, where each element is fed independently at one or several
feeding points. The current distribution in the mth element can be
written as

|:I(771):| — [Z(m-,m)]_l |:V(m):|
Ny

- S ] ] o

n=1,n#m

where [I0™)], [V(™] and [Z("™"™)] are respectively the current distri-
bution vector, the feeding vector and the self-impedance matrix of the
mth element. The matrix [Z (”L’“)] is the mutual coupling impedance
matrix between the mnth element and the nth element. From (5) we can
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Fig. 1. A PEC antenna array with elements fed with independent feeding volt-
ages. Each element contains a straight wire perpendicularly mountedonab x b
PEC square.

see clearly that two factors have influences on the current distribution
of an element: the feeding voltages on the element and the coupling
fields from the other elements. The effect due to these two factors may
possibly be different. Instead of constructing one single solution space
to include the effect of these two factors, as was proposed in [10], in this
paper we define two separate solution spaces, one space for the feeding
voltages, the other space for the mutual coupling fields. The SBFs are
found from each solution space using SVD process separately.

The first solution space [R1] is used to contain the radiation fields
caused by all internal sources. It can be created in a way similar to that
discussed in [10], which is denoted by

2 =[] [ @] e 2] ©

The column [r(“)] is the current distribution on the element when it is
isolated and is fed by the uth feeding voltage alone. Applying SVD to
(6) yields

[Ry] = [Ul][P1]UV1]T. (7

The columns of [U] corresponding to those singular values larger than
a properly chosen threshold are used as SBFs for the first solution
space. In our example shown in Fig. 1, only one feeding voltage ex-
ists in an element. Therefore, the first solution space contains only one
column. It is not necessary to perform SVD to it. We can simply use
the sole column vector as the SBF to account for the effect of this solu-
tion space. For a block containing many interior sources, or distributed
sources, SVD process is required to extract the SBFs.

The second solution space [ R:] is used to contain the scattered fields
caused by incident fields from the environments. It is constructed
exactly following the way described in [10], however, the auxiliary
sources are arranged with the method proposed in [12]. The SBFs for
this space can also be found using SVD method. The total SBFs for
this element include the SBFs from the two spaces. Each SBF is an
aggregation of the low order basis functions. We denote the £th SBF
of the mth element as

Ny
B =% 0" O™, k=

=1

1.2,... M, ®)

where f1™ is the ith low order basis function on the mth element,
UL™ (i) is the kth column vector of the matrix [U/], M, is the number
of the SBFs on the element. There are totally M M; SBFs for the whole
PEC antenna array.

The current distribution can then be expressed by SBFs, i.e.,
T=3" 3 e B, ©

Substituting (9) into (2) and testing it with SBFs ﬁl(") * yields

[ [em] = [oe] - ]

(10)
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where the upper script ¢ stands for transpose and the asterisk for
conjugate. The entries of the size-reduced coefficient matrix [4::’/”]
can be calculated with the self- and mutual-impedance matrices as
follows:

)= ] ) ]

The number of SBFs required is usually much less than that of the
low order basis function, the size of (10) is largely reduced and in many
cases it can be solved directly.

III. NUMERICAL RESULTS

Three PEC antenna arrays are checked to show the effect of how
the solution spaces are constructed. The element of the first array has
a straight PEC wire placed perpendicularly to a PEC plate, as shown
in Fig. 1. The feeding voltages are imposed at the wire-plate junctions.
The working frequency is 0.3 GHz. The geometrical structure of the
array is illustrated in Fig. 1, where « = 0.5 m, b = 0.914 m, d = 0.1
m,/=02m,u=01m,~2=0.421 m.

For each element, 375 RWGs are used to mesh the PEC plate, and 14
roof-top basis functions are used for the straight wire, together with a
wire-plate junction basis function [13]. As aresult, 1560 basis functions
are used for the array.

The array is analyzed using SBFs constructed with the proposed pro-
cedure in this note and that proposed in [10]. We will measure the ac-
curacy of the SBF methods with respect to that obtained by rigorous
MoM algorithm, using the relative errors of the values (|r E(#;,0)|) as
follows

180 0
Z [rE(8:,0)|ssr — rE(8:,0) |yl
B = | =L - x 100%
Z [rEB(6,0)%10m
=1
(12)

where #; = iw /180,47 = 1,2,...,180, and E(#;,0) is the electric
field value at the point (7, 6;,0).

The values of E'rr are obtained by using SBFs that are generated
with the proposed method in this note and that proposed in [10]. The
calculated results of Err with 1 < Nggp < 25 are shown in Fig. 2,
where Nspr is the number of SBFs on a single block.

As shown in Fig. 2, the Err obtained in this paper is always less
than that using the method in [10] with the same Nsgr. With 25 SBFs
in one element, the value of E'rr with the new method is about 1.4%,
while that with the method in [10] is 5.6%.

The radiation fields are plotted in Fig. 3. The result with Nsgr = 12
is very close to that by using MoM, while the unknown number is only
4% of that in MoM. However, when the method in [10] is used, the
result with Nsgr = 25 is still not satisfactory, as can be seen from
Fig. 3.

The second example is a phased array with 9 units placed uniformly
along a circle with radius of R = \/4. Each unit is a bow-tie an-
tenna with geometrical parameters shown in Fig. 4, with A being the
feeding point. The phased array is assumed to be set up around a PEC
pole with square cross section. The working frequency is 2.4 GHz.
In order to evaluate the effect of the pole, the phased array is treated
as a single block. The surface current on the array is expanded with
142 x 9 RWGs, and that on the pole is expanded with 316 RWGs.
The auxiliary sources are put on the surface of a hollow cylinder with
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Fig. 2. The Err versus the number of SBFs on each block in the second an-
tenna array. “This paper”: using the SBF method in this paper; “ [10]”: using
the SBF method in [10].
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Fig. 3. The calculated |7 E(8, 0)| of the first antenna array. “This paper (12)”:
using the method in this paper with 12 SBFs on each block. “ [10] (25)”: using
the method in [10] with 25 SBFs on each block.

2h

Fig. 4. A phased array placed around a PEC pole. h = 20 mm, ! = 16 mm.
(a) Top view. (b) A part of the side view.

circumferences indicated by the dashed lines in Fig. 4. With this ar-
rangement, the second solution space contains not only the scattered
fields caused by the incident fields coming from the exterior side of
the antenna array circle but also those caused by the incident fields
coming from the interior side of the antenna array circle, e.g., the fields
scattered by the pole. The first solution space contains 9 vectors. Each
vector corresponds to the current distribution by feeding the array one
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Fig.5. The Err versus the number of SBFs on the phased array in Fig. 4. “This
paper”: using the SBF method in this paper; *“ [10]”: using the SBF method
in [10].

Fig. 6. A 5 x 5 phased array near a PEC plate.

unit at a time. Following the proposed procedure, SVD process is ap-
plied to get the SBFs of the two spaces separately. It is found that in
this case, the SBFs of the first solution space are almost exactly the 9
vectors that formed the space.

Equation (12) is used to evaluate the effect of the method. In the
case that all feeding voltages are of the same phase, the numerical er-
rors using the proposed method and the conventional one are plotted
in Fig. 5. With the same number of SBFs, much better accuracy can be
achieved using the proposed method.

The third example is a 5 X 5 phased array with the same bow-tie unit
placed uniformly with center separation of A/2, as shown in Fig. 4. A
2X x 2X PEC plate is placed near the array to serve as an obstacle.
The array is also treated as a single block, and the SBFs are generated
using auxiliary sources on the surface of a cuboid containing the array,
as depicted by the dashed line in Fig. 6. In this case, the first solution
space has 25 vectors. It can be found that the eigen functions extracted
using SVD procedure are still very similar to the original vectors. This
is not strange since the 25 vectors are highly independent. Therefore,
we can use the original 25 vectors as SBFs directly.

The surface current on the array is expanded with 142 x 25 RWGs,
and that on the plate is expanded with 296 RWGs. The numerical errors
associated with the two methods of SBF generation are plotted in Fig. 7,
where the array is supposed to be a broadside array, i.e., all feeding
voltages are of the same phase. Again, the proposed method shows
advantage over the conventional method.

The effects due to the following variations are also checked in this
example: (1) the distance d between the array and the PEC plate; (2) the
phase of array unit. The SBFs are needed to be generated only once, and
can be reused to evaluate the influence of all these variations. We have
compared the behavior of the proposed method and the conventional
one. It is verified that, at least in all cases we have checked, to get the
same level of accuracy, much fewer SBFs are needed if the proposed
method is used. Because all the results of E'rr are similar to the plots
in Fig. 7, they are not presented here.
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Fig.7. The Err versus the number of SBFs on the phased array in Fig. 6, with
d = 2\. “This paper”: using the SBF method in this paper; *“ [10]”: using the
SBF method in [10].

IV. CONCLUSION

In many situations such as analyzing antenna arrays, the electromag-
netic characteristics of a block is affected by some different factors.
Therefore, it is more reasonable to construct SBFs of the block from
several separate solution spaces than to construct them from a single
solution space. In this way, the electromagnetic characteristics of the
block may possibly be expressed more efficiently by SBFs, which will
lead to a higher compression rate of the number of unknowns in solving
the electromagnetic problems of these systems.
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