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Transient Scattering by Dielectric Objects
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Abstract—Application of analytical formulas for the re-
tarded-time potentials in Müller- and PMCHWT-type time-do-
main integral equations (TDIEs) is presented. The impulsively
excited scalar and vector potentials are evaluated in closed form,
and the coupling coefficients can be calculated with high ac-
curacy. Examples of transient analysis of the electromagnetic
scattering from dielectric objects are provided and solved with
marching-on-in-time (MOT) method. Numerical results show that
solutions for Müller-type MOT TDIE are always stable if the cou-
pling coefficients are accurately evaluated, while the PMCHWT
type usually suffers from the dc instability.

Index Terms—Marching-on-in-time (MOT), Müller equation,
PMCHWT, time-domain integral equation, transient electromag-
netic scattering.

I. INTRODUCTION

T IME-DOMAIN integral equations (TDIEs) remain ap-
pealing to researchers for their advantages in analyzing

transient radiation and scattering problems in large-scale and
complex structures, as well as in wideband applications [1],
[2]. To remedy the late time instabilities, techniques like aver-
aging [3], implicit time-stepping method [4], smooth temporal
basis functions [5], precise integration schemes [6]–[12], and
Calderón preconditioning [13] are proposed.
Many research results have shown that high precision of the

coupling coefficients between the bases in marching-on-in-time
(MOT) method often provides substantial stabilizing effects.
Closed-form formulas for calculating the retarded-time poten-
tials in electric field integral equation (EFIE) and magnetic field
integral equation (MFIE) are derived [7], [8]. Applications of
these formulas in different TDIEs for conductors are detailed
in [9]. When evaluating the potentials in MFIE, spatial deriva-
tives of the arc length and its bisecting vector function need to
be calculated, and their singular behaviors should be carefully
handled [10].
In this letter, analytical expressions in [7] and [8] with some

modifications are applied in the transient analysis of dielectric
objects. Compared to the previous expressions, they are more
concise and compact. Moreover, it is shown that only two kinds
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Fig. 1. Geometric parameter definitions. (a) Observation point projecting on
the source triangle. (b) Parameters for one subtriangle.

of impulsive retarded-time potentials are needed to implement
the PMCHWT- and Müller-based TDIE solvers for dielectric
objects [11], [14]. The spatial derivative on the Delta impulsive
potentials in [8] is avoided, and the original singularities are
directly removed or extracted.

II. ANALYTICAL EXPRESSIONS FOR RETARDED-TIME
POTENTIALS IN MÜLLER AND PMCHWT EQUATIONS

A. Analytical Expressions for the Retarded-Time Potentials

There are two basic kinds of impulsively retarded-time po-
tentials in the TDIEs, the scalar one and the vector one, which
are defined as follows [7]:

(1)

(2)

where is the projection of the observation point on the
source triangle plane, and represents the distance
between the source and field points. is one triangle patch of
the th RWG basis that models the object. is the speed of light
in free space.
In [7]–[9], closed-form expressions for and are

provided. Here, we present them in a more compact way.
Geometric parameters in the new expressions are depicted in
Fig. 1(a) and (b). , and are the vertices of a source
triangle. The distance between the field point and the source
triangle plane is denoted by , in which is the
unit normal vector of the source triangle. is the local
in-plane coordinates. For edge of the source triangle, is its
outward unit normal vector, and is the unit tangential vector,
pointing from to . They are subject to .
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The source triangle is divided into three subtriangles with a
common node , as is shown in Fig. 1(a). Then, the integra-
tion is carried out on each subtriangle respectively. We can see
that and are respectively related to the central angle and
bisecting vector of the intersecting arcs. Through the vertex co-
ordinates of the RWG patches and some sign symbols, the inte-
gration of (1) and (2) can be finally expressed by

(3)

(4)

in which

(5)

(6)

The above-listed formulas can be programmed without the
necessity to calculate the intersecting points. The geometric re-
lationships between the concentric time spheres and the source
triangle can be judged automatically. Careful examination of
(3)–(6) shows that there is no apparent singularity evolved.

B. Müller and PMCHWT Equation

Consider a dielectric body bounded by surface residing in
a homogeneous background. The exterior region and dielectric
region are denoted as and , respectively. Their permittivity
and permeability are . The Müller and PM-
CHWT equations can be expressed in a uniform way

(7)

where

(8)

(9)

(10)

(11)

In (7), denotes unit norm vector of the field triangle, and
the wave impedance in region-1 is used to equalize the equa-
tion. is the identity operator, and and are the electric and
magnetic integral operators, respectively, which are expressed
as [11, Eq. (3)]. When , we get the PMCHWT, and
when , Müller formulation is obtained.
It is known that PMCHWT is a Volterra integral equation of the
first kind and Müller is of the second kind.
In the MOT procedure, the electric and magnetic currents are

approximated as

(12)

(13)

where is the number of spatial bases and is the
total temporal bases . Assume that the surface of the ob-
ject is discretized by triangular patches, is chosen as the
RWG basis function. For the temporal basis, we use the La-
grange polynomial function in [11, Eq. (6)].
Applying Galerkin’s test to (7) for spatial variables and point

testing for temporal variables yields the MOT schemes

(14)

To render a well-conditioned equation, the Müller equation
is tested with , while the PMCHWT equation is tested
with . To avoid the temporal integration, we take the
temporal derivative of the PMCHWT.
The operators of PMCHWT are tested with the same scheme

like that in the combined field integral equation (CFIE)-based
TDIEs in [9], so we only detail the differences in the Müller
formulation. Only the test for the electric currents is discussed.
The testing integral for the time derivative of the vector poten-
tial is very similar to that in [8], so only two kinds of testing
integration need to be detailed

(15)

(16)

. here represents the Cauchy principal value [10], and
represents the inner product. and are the magnetic vector
potential and electric scalar potential due to the electric currents
(see [7, Eqs. (2) and (3)]). For (15) and (16), we only discuss the
coupling between the two positive triangles and of the
th and th RWGs.
For (15), we move the gradient operator from the Green’s

function into the testing function. By applying the Gauss
divergence theorem, it can be further transformed into (see
[15, Eq. (23)])

(17)
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Here, is the contour of , and is the in-plane outer unit
norm vector of . We use and to represent the time
integral and derivative, respectively. Then, (15) can be finally
expressed as

(18)

in which “ ” means temporal convolution and

(19)

In (19), is the edge length of the th RWG, and is the
area of . Since can be analytically evaluated, it is
clear to see that no explicit singularity arises in (19).
Next, (16) can be written as

(20)

In this way, the gradient operation over Delta function in (16)
is transformed into the temporal differentiation on the current,
avoiding evaluation of surface integrals containing the spatial
derivative of Delta function. Formula (16) can be finally cast
into

(21)

in which

(22)

In (22), is the free vertex of . Note that (16) represents
the Cauchy principle integration. The singularities in (21) and
(22) at have already been extracted and handled in the
residue self-term .
The singularity in the counterpart of (17) in the PMCHWT

equation can be canceled using a vector identity as specified
in [9]. Singularity in the counterpart of (20) in the PMCHWT
equation can be similarly processed by singularity extraction.

C. Implementation of the Temporal Convolution

The convolution between the time basis function and impul-
sive potentials can be generally expressed by

(23)

in which can be , or . is one
kind of integral potential. Here, the spatial testing integral is per-
formed first and then convoluted with the temporal basis, as is

Fig. 2. Electric current of the observed RWG on the sphere.

in [9]. The temporal convolution is numerically implemented. It
is computationally efficient and also amenable for different tem-
poral basis. Moreover, to avoid the discontinuities in the deriva-
tives of the temporal basis, is first divided into intervals
whose span is , and then points are sampled
in each interval. is adaptively selected for the integral ac-
cording to the support of and .

III. NUMERICAL RESULTS

Modulated Gaussian plane wave is chosen to be the incident
field, which can be expressed in the following form:

(24)

where ,
and . is the polarization, and is the direction of
propagation. In all the numerical experiments, we set
and . To evaluate the matrix elements, the outer spatial
integrations are carried out using 25-points Gauss quadrature
for surface integrals and 10-points Gauss–Legendre rule for line
integrals. for the temporal convolution. Third-order
temporal basis function is adopted. The oversampling factor
is introduced to determine the time-step .
The equations are solved directly using LU decomposition.

A. Dielectric Sphere

In the first example, transient scattering from a dielectric
sphere with radius 1 m, , and is analyzed. The
surface mesh is composed of 216 triangles, forming 324 RWGs.

MHz, and MHz. The time-step is 0.5 ns,
with .
Current coefficients of the highlighted RWG basis in 0–10 s

are depicted in Fig. 2. As the figure shows, the current decays
exponentially after the incident vanishes for the Müller-based
solver, while the solution of PMCHWT has a slowly growing
magnitude, owing to the dc instability described in [13]
and [16]. There are no resonance instabilities in both of the
solvers, even when the lowest resonant frequency (131 MHz)
of the unit spherical cavity is included in the incident field.
The eigenvalues of their companion matrix [13] are plotted in
Fig. 3. We can see that all eigenvalues of the Müller equation
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Fig. 3. Eigenvalues for the dielectric sphere of the MOT TDIEs: (a) Müller
type; (b) PMCHWT type.

Fig. 4. Electric current of the conesphere at the observation RWG.

Fig. 5. Comparison of bistatic RCS obtained by MOT and MoM
codes for the cone-sphere at (a) 150 and (b) 250 MHz.

are distributed inside the unit circle, while there is a cluster of
eigenvalues around in the PMCHWT equation.

B. Cone-Sphere

Next, transient scattering from a cone-sphere with relative
permittivity 4.0 is analyzed. The radius of the base of the cone
is 0.25 m, and the height is 1.0 m. The surface is modeled
by 879 RWGs. The incident field is characterized by

MHz, MHz. The time-step is 1/6 ns, with
.

Electric currents are shown in Fig. 4, for 3000 time-steps.
Early time solutions of the Müller and the PMCHWT equations
agree well with each other. In the late time, solutions of the
Müller are exponentially stable, but the dc instabilities show

up again in solutions of the PMCHWT equation. In Fig. 5,
RCS data sets by the MOT solvers are compared to that by the
PMCHWT-based method-of-moments (MoM) solver at 150
and 250 MHz, which clearly demonstrate the accuracy of the
MOT solvers.

IV. CONCLUSION

Compact closed-form expressions for time-domain potential
integrals are applied for accurately evaluating mutual coupling
coefficients between RWG elements. Müller and PMCHWT
equations incorporated with these formulas are implemented
for analyzing transient scattering of homogeneous dielectric
objects. Numerical results show that if the matrix entries
are accurately evaluated, Müller-type MOT solver is always
stable, while its solution decays exponentially. However, the
PMCHWT type is prone to dc instabilities.
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