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Application of Loop-Flower Basis Functions in the
Time-Domain Electric Field Integral Equation

Xuezhe Tian, Gaobiao Xiao, and Jinpeng Fang

Abstract—The loop-flower basis functions are applied to get a low-
frequency stable time-domain electric field integral equation (TD-EFIE).
The quasi-Helmholtz decomposition is performed by the loop-flower basis
functions, which are all defined based on mesh nodes. To get a well-posed
equation, a temporally differentiated form of the TD-EFIE is tested with
the flower function and the undifferentiated form is tested with the loop
function. For a robust MOT solver, the averaging scheme is also adopted
to alleviate the high-frequency instabilities. Numerical verifications of per-
fect electric conductor (PEC) transient scattering problems are provided
to demonstrate the accuracy and stability of the proposed technique.

Index Terms—Helmholtz decomposition, loop-flower, low-frequency
instability, marching on in time (MOT), time-domain electric field integral
equation (TD-EFIE).

I. INTRODUCTION

Time-domain integral equations (TDIEs) have kept an increasing
appeal in the computational electromagnetic (CEM) for their appli-
cations in large scale and complex structures, wideband problems, as
well as in electromagnetic compatibility and interference (EMC/EMI)
problems [1]–[3]. Problems such as inefficiency and instability that
used to cripple the TDIEs have been largely solved. Fast methods
such as PWTD [4] and TD-AIM [5] have been developed and incor-
porated into TDIEs. For the late time instability problem, techniques
such as the averaging/filtering method [6], exact integrations [7]–[9],
smooth time basis functions [10], and Calderón preconditioning [11]
have shown their effectiveness to obtain stable solutions.

Among the TDIEs, TD-EFIE is the most difficult to get stable solu-
tions. Besides the internal resonance problem, which is a substantial
cause of high-frequency instabilities, TD-EFIE also suffers from the
low-frequency instabilities, which are due to TD-EFIE’s null space of
static solenoidal currents [10], [12]. Although difficult to stabilize, the
TD-EFIE remains appealing for its high accuracy and versatility to
open structures.

In [12], a loop-tree decomposition method for TD-EFIE is proposed
to obtain a low-frequency stable marching on in time (MOT) solver. It
is explained in [12] that augmenting the TD-EFIE with the first deriva-
tive of normal magnetic condition can effectively remedy the static
currents. The test of the undifferentiated TD-EFIE using solenoidal
basis functions has approximately the same efficacy, providing that
the testing basis functions are suitably restricted [12]. In [13], the
time-domain augmented electric field integral equation (TD-AEFIE)
is proposed to cure the low-frequency instabilities, which originates
from the frequency domain AEFIE for the low-frequency breakdown
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phenomenon [14]. A new set of charge density unknowns is added in
the TD-AEFIE, which will inevitably increases the complexity, mem-
ory, and CPU time of the original TD-EFIE. In [15] and [16], the
hierarchical approach is proposed to implement the quasi-Helmholtz
decomposition. The hierarchical regularization has a good capability
of dealing with the low-frequency breakdown phenomenon in the TD-
EFIE. The use of hierarchical bases can yield well-conditioned MOT
system matrices as the time step increases when analyzing quasi-static
field interactions.

In this communication, we focus on the construction of a low-
frequency stable TD-EFIE for general scattering problems not just for
the quasi-static ones. The same testing scheme as in [12] is adopted,
while the Helmholtz decomposition is implemented using the loop-
flower basis functions, which have been proposed recently and applied
effectively in the method of moment (MoM) for low-frequency break
down problems and the Calderón preconditioning technique in [17].
This kind of decomposition avoids the search for tree basis and the
degrees of freedom (DoF) can be compressed compared with that
based on the Rao-Wilton-Glisson (RWG) or loop-tree/star basis func-
tions [17]. To get a robust MOT solver, the averaging technique is
also adopted here to eliminate the high-frequency oscillations, which
is computationally efficient despite slight loss of accuracy.

II. FORMULATION

When a PEC scatterer, whose surface is S, is illuminated by an inci-
dent field Einc (r, t), surface currents J are induced and the standard
TD-EFIE can be derived

T (J) = −n̂×Einc (r, t) (1)

in which r is the field point, n̂ represents the normal unit vector of S.
The electric integral operator T (J) can be written as

T (J) =− μ

4π
n̂×

∫
S′

∂tJ (r′, t−R/c)

R
dS′

+
1

4πε
n̂×∇

∫
S′

∫ t−R/c

−∞ ∇′
s · J (r′, τ) dτ

R
dS′. (2)

Here, ∂t denotes the first order time derivative, ε is permittivity, μ
is permeability, c is the speed of light in free space, and R = |r′ − r|.

Due to the time integral in T (J), (1) is usually differentiated with
respect to time

∂tT (J) = −n̂× ∂tE
inc (r, t) . (3)

We will refer to (1) as the integral form of the TD-EFIE and (3) as
the differentiated form.

In the following, we adopt the loop-flower basis functions to spa-
tially discretize T (J). A loop basis function is depicted in Fig. 1(a). It
is defined with respect to the reference node rn, with support on all the
triangles connecting to rn. A reference rotation direction is assigned
for each loop basis function. A loop basis function can be expressed
by the aggregation of RWG basis functions as follows:

fL
n (r) =

Nn∑
i=1

CL
n

ln,i
fR
n,i (r) (4)

where Nn is the number of the surrounding triangles, fR
n,i (r) is the ith

RWG basis whose common edge is connected to the node rn, and ln,i

is the common edge length. CL
n = 1 if fR

n,i (r) is in the same direction
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Fig. 1. (a) Loop basis function. (b) Flower basis function.

with the reference direction of the loop basis, otherwise, CL
n = −1.

The common edges of RWGs are plotted with bold lines in Fig. 1(a).
A flower basis function is also defined with respect to the reference

node rn, and a reference direction is assigned for each flower basis
function, as shown in Fig. 1(b). It can be explicitly expressed by

fF
n (r) =

Nn∑
i=1

CF
n

ln,i
fR
n,i (r). (5)

It can be checked that the loop basis functions are divergence-free,
while the flower basis functions are approximately curl-free, which
makes them suitable for performing the quasi-Helmholtz decomposi-
tion on a surface. The DoF of the loop and flower basis function has
been fully discussed in [17]. The number of DoF of the loop and that
of the flower basis functions on a qualified closed surface are both
Nn − 1, where Nn is the number of nodes on the surface. For open
structures, they are closely related to the number of internal nodes and
RWG-connected node groups [17].

The surface current is divided into a solenoidal part JL and a non-
solenoidal part JF , expanded with loop-flower spatial basis functions,
and Lagrange polynomial temporal basis functions as

J (r, t) = JL (r, t) + JF (r, t)

=

Nt∑
j=1

[
Nn−1∑
n=1

IL
n,jf

L
n (r)Tj (t) +

Nn−1∑
n=1

IFn,j (t)f
F
n (r)Tj (t)

]
.

(6)

Substituting (6) into (1) and (2), and applying the point matching
in time and Galerkin testing in space, we can get a set of Nt × 2
(Nn − 1) matrix equations. Specifically, the integral form of TD-
EFIE in (1) is tested with the loop function and the differentiated
form in (2) is tested with the flower function. In such a spatial testing
scheme, the integral term is avoided. Besides, the final matrix equation
is equivalent to impose the differentiated normal magnetic condition
on the original TD-EFIE [12], which can effectively eradicate the low-
frequency instability. Finally, the matrix equation can be solved in the
following marching form:

[
ZLL

0 ZLF
0

ZFL
0 ZFF

0

][
IL
j

IF
j

]
=

[
V L

j

V F
j

]
−

Nt∑
k=1

[
ZLL

k ZLF
k

ZFL
k ZFF

k

][
IL
j−k

IF
j−k

]
(7)

in which

V L
j,m =

∫
S

fL
m (r) ·Ein (r, jΔt)dS (8)

V F
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(13)

It is clear that the matrix entries are merely the linear combina-
tion of those in the RWG-based TD-EFIE. The implementation is
straightforward from the original TD-EFIE [17].

The averaging technique has been proved to be an effective way to
eliminate the high-frequency oscillation instabilities. Here, the com-
monly used three elements low-pass filtering scheme is adopted. The
stability properties of the linear dynamic MOT system are closely
related to the eigenvalues of its corresponding discrete systems [18].
The companion matrix of the averaged marching system can be found
in [13]. If none of the companion matrix’s eigenvalues falls out of the
unit circle, the corresponding MOT system will be stable.

III. NUMERICAL RESULTS

The incident field is chosen as the modulated Gaussian plane wave,
which can be written as

Einc (r, t) = p̂e−γ2

cos (2πf0τ) (14)

where γ = (τ − tp)/(
√
2σ), τ = t− (r · k̂)/c, σ = 3/(2πfbw), and

tp = 8σ. f0 is the center frequency, fbw is the bandwidth, and f ∈
[f0 − fbw, f0 + fbw]. p̂ is the polarization of the incident wave and

k̂ is the direction of propagation. In all the numerical experiments,
we set p̂ = −x̂ and k̂ = −ẑ. For a reasonable time step, the tempo-
ral oversampling factor χo is introduced, which is defined as χo =
1/(2Δtfmax). In the following numerical experiments, the time basis
is chosen as the third-order Lagrange polynomial function. Analytical
expressions in [9] are used for the evaluation of the matrix ele-
ments. The matrix equations are solved using the Lower Upper (LU)
decomposition and direct matrix inversion.

A. Sphere

In the first example, transient scattering from a PEC sphere with
radius 0.5 m is analyzed. The surface mesh is composed of 152 tri-
angles, 78 nodes, forming 228 RWGs. For the incident field, f0 =
50MHz, fbw = 50MHz. The time step is 0.5 ns, χo = 10.

Current coefficient of the labeled loop basis in 0–50µs is depicted
in Fig. 2. As the figure shows, the current decays exponentially after
the incident vanishes and down to a floor at the order of −16. To val-
idate the system’s stability, the eigenvalues of its companion matrix
are plotted in Fig. 3. We can see that the eigenvalues are all distributed
inside the unit circle except those at (1, 0i). There is a cluster of eigen-
values residing at (1, 0i), and the zoomed-in Fig. 3(b) shows that they
locate exactly on the unit circle at (0, 0i), implying the low-frequency
stable property.
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Fig. 2. Current coefficients of the observed loop on the sphere.

Fig. 3. (a) Eigenvalues of the MOT system for the sphere. (b) Zoomed-in at
(1, 0i).

Fig. 4. Current density of an RWG on the sphere obtained using different bases.

To investigate the performance compared with the hierarchical
approach, we construct a level-2 mesh by bisecting each edge of
the original mesh and connecting the new nodes, as detailed in [15]
and [19]. The set of hierarchical basis function of the coarse level
is the loop-tree function. The scheme stated in [12] using the loop-
tree function is also introduced here for comparison. The temporal
bases are all chosen to be the third-order Lagrange polynomials. Under
the excitation whose f0 = 50MHz and fbw = 50MHz, the currents
obtained by different schemes are compared with the original RWG-
based solutions in Fig. 4. The solutions are practically the same, clearly
demonstrating the accuracy of different schemes.

To investigate the low-frequency performances of different solvers,
the frequency varies from 1.0 GHz to 0.01 kHz and the oversampling
factor remains to be 10. The average mesh edge size is 1/3 of the
wavelength at 1.0 GHz. Fig. 5 shows the condition number of the MOT
matrices constructed using the loop-flower, loop-tree, hierarchical, and

Fig. 5. Condition number of the MOT system matrices constructed using
different bases and different time steps for the sphere.

Fig. 6. Current coefficients of the observed loop basis on the smooth flower.

RWG bases. As frequency goes down, the matrices constructed using
the RWG become increasingly ill-conditioned, whereas the matrices
based on the loop-tree, loop-flower, and hierarchical bases have a con-
stant condition number. The performance of the loop-flower basis at
low frequency is better that of the loop-tree and quite near to that of
the second-level hierarchical bases. But the RWG outperforms all these
loop-separated bases at high frequencies.

B. Smooth Flower

Transient scattering from the flower shaped scatterer is discussed in
this example. Its surface can be explicitly expressed by

r (θ, φ) = sin2 (2θ) cos2 (φ) + 1.5 m. (15)

The mesh of the model is composed of 726 triangles, 365 nodes,
1089 RWGs. The center frequency of the incident is 50 MHz and the
bandwidth is 20 MHz. The time step is chosen as 0.4 ns. The corre-
sponding oversampling factor is 18. For this analysis, we employ both
the loop-flower-based scheme and loop-tree-based scheme proposed
in [12].

Fig. 6 shows the evolution of the current coefficient of the labeled
loop basis in 100 000 time steps. We can see clearly that the cur-
rent magnitudes converge exponentially in both schemes. Radar cross
section (RCS) data sets at 50 and 70 MHz are compared with that
obtained by the RWG-based MoM in Fig. 7. At 50 MHz, the mean
relative one-normal errors [10] using loop-flower and loop-tree are
0.012 and 0.017, respectively, showing excellent accuracy of the MOT
solvers.

C. Two Parallel Plates

In the following example, we apply the loop-flower basis functions
to analyze scattering from open surfaces: two parallel PEC plates.
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Fig. 7. Comparison of bistatic RCSs obtained by MOT and MoM solvers for
the smooth flower at (a) 50 MHz; (b) 70 MHz.

Fig. 8. Current coefficient of the observed loop on the parallel plate.

Fig. 9. Comparison of bistatic RCSs obtained by the MOT and MoM solvers
for the parallel plate at (a) 100 MHz; (b) 250 MHz.

Both plates are of size 1m× 1m and they are separated by 0.1 m.
The structure is centered at origin of the coordinate, leaning 45◦

from the X–Y plane to Y–Z plane. Each plate is meshed with 256
nodes (including 200 inner nodes), 653 RWGs, resulting in 199
loop, and 255 flower basis functions. The excitation parameters are
f0 = 200MHz and fbw = 100MHz. The time step is chosen as
0.09 ns, corresponding to χo = 19.

Stable electric current of the observed loop basis is plotted in Fig. 8.
There is a long tail in the temporal waveform, which is caused by
the multiple reflections between the two plates. RCS data obtained
by loop-flower-based MOT solver is compared with that computed by
RWG-based MoM at 100 and 250 MHz in Fig. 9. The relative error at
100 and 250 MHz is 0.037 and 0.065, respectively, verifying the capa-
bility of the loop-flower basis functions for transient analysis of open
structures.

IV. CONCLUSION

Loop-flower basis functions are adopted for a low-frequency stable
MOT TD-EFIE solver. By performing the Helmholtz decomposition
and combining the integral form with the differentiated form of the

TD-EFIE, the low-frequency instability is eradicated. Compared to
the loop-tree/star-based TD-EFIE, the unknowns are approximately
1/3 fewer for closed surfaces. The proposed MOT solver also has
a good low-frequency performance. Numerical examples show that
the proposed method is stable and accurate for both open and closed
structures.
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