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Abstract—Time-domain  generalized  transition  matrix
(TD-GTM) based on the time-domain integral equations (TDIEs)
is implemented in this letter. The TD-GTM is established on the
reference Huygens surface that encloses the object, using the
impulse responses obtained by the marching-on-in-time (MOT)
solutions. The TD-GTM fulfills the domain decomposition of
TDIEs naturally and flexibly. It allows us to analyze each module
independently and then to solve the whole system by establishing
the time-domain generalized surface integral equation (TD-GSIE).
Various TDIEs are used to extract the TD-GTM for different
modules. Numerical results show that the TD-GTM can effectively
improve the efficiency of original TDIEs for transient scattering
analysis of array structures.

Index Terms—Arrays, domain decomposition method, marching
on in time (MOT), time-domain generalized surface integral equa-
tion (TD-GSIE), time-domain generalized transition matrix (TD-
GTM), time-domain integral equations (TDIEs).

I. INTRODUCTION

IVEN the variety of electromagnetic compatibility/in-
G terference (EMC/EMI) effects involved in modern
electronic systems, numerical analysis of such systems using
a single integration scheme is clearly prohibitive. The domain
decomposition method (DDM) is a feasible solution that allows
us to divide the whole complex and large-scale system into
subdomains, and electromagnetic fields of each subdomain
can be solved independently. For the method of moments
(MoM), generalized transition matrix algorithm (GTM) [1], [2],
equivalence principle algorithm (EPA) [3], nonconformal
DDM [4], and the linear embedding via Green’s operators
(LEGO) [5]-[7] have manifested their superiority in analyzing
complex systems, such as phased antenna arrays, band-gap
structures, coupled components in integrated packages, as well
as anisotropic bodies. Meanwhile, DDM in the time domain for
time-domain integral equations (TDIEs) remains largely to be
investigated and developed.

In this letter, we are aiming to implement DDM for the
TDIEs, using the time-domain generalized transition matrix
algorithm (TD-GTM) and time-domain generalized surface
integral equation (TD-GSIE). We define the TD-GTM on a
reference surface uniquely to characterize the time-domain
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Fig. 1. A scatterer enclosed by the Huygens surface.

electromagnetic properties of each module. It directly relates
the rotated tangential components of the scattered fields to
the rotated tangential components of the incident fields. This
relationship can be obtained using the impulse responses of the
TDIEs inside the equivalent surface, when the inside solver is
free from the resonance problems [8]. Wideband time domain
information can be incorporated in the TD-GTM, which is a
great superiority to the frequency GTM. After extraction, the
TD-GTM is used to establish TD-GSIE for the whole system,
where coupling effects among all subdomains are considered.

II. THEORY OF THE TIME-DOMAIN GENERALIZED
TRANSITION MATRIX

In general, the TD-GTM is an extension of the GTM in the
frequency domain. Consider a scatterer enclosed by the Huy-
gens surface .S, as is shown in Fig. 1. The incident fields are
denoted as E™°¢, H™°, Their rotated tangential components on
the equivalent surface are T, HT respectively, which read

E+ Ei11c X &n !
nﬁ+ - aanﬁinc ‘ ()

Here, a,, is the outward unit normal of the equivalent surface,
and 7 is the intrinsic impedance of the free space.

To represent the fields £™¢ and H**? radiated in the region-v
by the surface equivalent electric currents J; and magnetic cur-
rents M;, we define an operator matrix [S,] as

Erad wpn | M,
[ﬁ x nﬁ”ad} e [nf} @
in which
KM L]
(8] = [UEV'L,M Gy ] : 3)

L, and K, are the electric field integral operator and the mag-
netic field integral operator, respectively, as defined in [9]. .
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Fig. 2. Total field imposed on the mth block in a multimodule system.

is the permeability, and €, represents permittivity in region-r
(v = 1 denotes the free space).

The rotated tangential fields imposed on the objects inside the
closed surface can be regenerated by E+ and H' as follows:

Fix E+
[ﬁ x nﬁ"] =& [nfﬁ} ' @

Then, equivalent electric and magnetic currents J and M on
the enclosed objects can be solved using the marching-on-in-
time (MOT) procedure based on specific TDIEs. They will gen-
erate the outgoing fields, whose rotated tangential components

on S can be denoted by
E-] M
[nﬁ‘] _[81][nfl ©

The fields E5® and H*°® outside S can be easily obtained
from E~ and H~. To get the TD-GTM of the module is to find
out the relation between the ingoing and outgoing rotated tan-
gential field variables ET, H* and E—, H ~. The establishment
of inner TDIE solvers is not elaborated here. Interested readers
can find more details in [9]-[11]. After the discretization and
testing procedure, we can express the relationship between the
discretized outgoing variables e . .k . and the discretized inci-

n,j''n,j
dent variables e}?‘j h}?; in a convolution way
e kf))ax—l einc
|: h:| = Z [C]k[ hinc:| + Q;—kgﬂax (6)
1 J k=0 K i=k
in which
elﬂC
(&
ke = QF ke -1 T [Clke [ ]
J kG T kGax— Fiax | phine ke
Here, [Clx (k = 0,1,---,kS,.) are defined as the time-

domain generalized transition matrices, denoted as TD-GTM.

ki ax 1s the length of [C]y. To obtain the TD-GTM, we set eipe
and A} to be the delta-like impulses [8]

gine S k=0 _

nhi*e |, 0 else ’ m=12-Nes  (7)
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in which N is the number of unknowns on the equivalent sur-
face, J,, is a column vector, and its entries are

o) ={ "5

Nes.
else

n=12---,

It should be emphasized that the inner solver for the TD-GTM
extraction should be resonance-free. k5, .. will be very large if
the impulse responses contain highly resonance components. To
determine a reasonable & ..., we define the sample length ratio
(rs1), which equals the ratio between k%, At and the time that

wave travels in the longest path inside S.

III. IMPLEMENTATION OF THE TD-GSIE

For a multimodule system, TD-GSIE can be established
based on TD-GTM of each block and the coupling among them.

Consider a multiradiating structure as shown in Fig. 2. We
separate it into M elements and enclose each element by a
regular equivalent surface. The interactions between the orig-
inal elements are conveyed through their reference surfaces. The
total fields imposed on the mth module consist of two parts, the
incident fields and the coupling fields from other modules

— . M =
Et E™¢ x ay, E
|:77ﬁ+:|m B |:d” X ,nﬁinc]m+ —1Z7£ [Sl}m’n{nﬁ}n
(®)

in which [S1]m,» is the operator matrix in (3) that transmits the
interaction from the nth to the mth module. After testing the
fields on block-m, the convolution system can be established as

kS, —1 )
67 max e‘l
{nh} T > [O]m.k|:,’7hi] @ik, O
m,j k=0 m.j—k
in which
|: ei :| |: einc :|
nhl mj hlnC m7j
M ki =1 -
€ d
> > D ]m””"[nh} R
m=1m#n k=0 nj—k

(10)

and

(]

[
m,j— kmax - Qn'"J knlax+[C}Tn‘7kfnax |:T)h1:| k
m,j—kE

max
d d
QL e = Q0 e

mn.J—Knlax riax

Pl wtzr [nh ] n -k

Here, [D],, is the discretized matrix of [Si], , and kdmn

is its length. @7, ; and an % are the accumulating vectors due

to the 1ntegrat10n of time in the operators for each module and

their interactions. The elements of [ D], should be evaluated

precisely so that the coupling interactions among different mod-

ules are transmitted accurately. It is also worthy to note that

proper [D],,, can be obtained even when [C],, and [C],, are

discretized by different time-steps. This will lead to a localized
MOT system, which can provide higher flexibility.
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Fig. 3. Comparison of the original and reconstructed incident waves on the
sphere: (a) time-domain wave form; (b) spectrums.

IV. NUMERICAL RESULTS

The incident field is set to be the modulated Gaussian plane
wave

Ei(7t) = pe 7 cos (2rfor) (11)

where v = (1-t,)/(V20), 7 = t — (Fek)/e,
0 =3/(27fuw), and t, = 8c. fy is the center frequency, fhw
is the half-bandwidth. % is the propagation direction, and p is
the polarization direction. To evaluate the matrices elements,
analytical scheme in [10] is adopted. The time basis function is
the triangle basis.

A. Dielectric Sphere

In the first example, transient scattering from a dielectric
sphere is analyzed. Radius of the sphere is 0.5 m with relative
permittivity £, = 2.2. Configurations for the incident are
fo = 100 MHz, fiw = 100 MHz, p = —&, and k = —2. The
sphere’s mesh is composed of 2004 RWGs, with an average
edge length of 0.07 m. The reference surface is a cubic around
the sphere with side length 1.2 m. To get the TD-GTM of the
dielectric sphere, inner MOT solver is established based on the
Miiller equation, with a time-step of 0.25 ns.

The discretization of the Huygens surface is a key issue for
both the accuracy and efficiency of the TD-GTM. Here, we
discretize the reference surface respectively with average edge
length of Ayin /5, Amin/10, and Ay, /15. To show the accuracy
of the reconstructed incident wave by the reference surface, we
plot the tested incident electric fields on one RWG of the orig-
inal sphere in Fig. 3(a) and their corresponding spectrums in
Fig. 3(b).

It can be seen that the incident field can be regenerated very
well using the Huygens unknowns on the reference surface even
when the surface is discretized by Apin /5. We use this mesh
configuration to extract the TD-GTM, the length of which is
kS . = 100, equivalent to r5) = 2.7. Then, we apply it to an-
alyze a 4 x 4 dielectric sphere array aligned on the xy-plane.
The distances between the centers of two adjacent elements in
x- and y-direction are Ax = 1.5 m, Ay = 1.5 m. The accu-
racy of the TD-GSIE is verified through the radar cross section
(RCS) comparison with method of moments (MoM) at 100 and
150 MHz in Fig. 4(a) and (b). The relative L errors are both
below 1.0%. However, the number of unknowns is reduced to
only 17% of the original problem.
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Fig.4. Comparison of the bi-static RCSs for the 4 x 4 sphere array by TD-GSIE
and MoM at (a) 100 MHz and (b) 150 MHz. (azimuth angle ¢ = 0).
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Fig. 5. Geometry parameters of the Vivaldi antenna.

B. Vivaldi Phased Antenna Array

In the last example, we analyze the transient scattering of
a Vivaldi antenna array. The parameters for the incident wave
are: k = [-v/2/2,0,—v2/2], p = [-/2/2,0,v/2/2], fo =
2.4 GHz, and fyw = 1.2 GHz. The geometry parameters of
each antenna element are depicted in Fig. 5, which are listed as
follows: L =12 cm, Ly = 8.5 cm, L = 0.3 cm, Ly = 0.2 cm,
W =9cem W, = Tecm, W, = 0.3 cm, Wi, = 0.2 cm,
di=07cm,dy=2cm, R =1cm, Ry =1.5cm,8; =77°,
#; = 31°. The substrate’s relative dielectric constant &, is 2.2,
and its thickness is 0.4 cm. Center working frequency of the
antenna is 2.4 GHz.

For this composite structure, the MOT solver is established
based on the PMCHWT and EFIE, following the procedures
detailed in [12]. There are 569 RWGs on the substrate and
454 RWGs on the PEC parts, of which 101 are junction func-
tions. The average edge length of the antenna mesh is 0.9 cm.
The reference surface is a cuboid measuring 13 x 10 x 1.4 cm?®,
with each side 0.5 cm away from the Vivaldi element. It is
meshed with 354 RWGs, with an average discretization size
1.8 cm. The time-step is 0.01 ns. The length of TD-GTM is
150, equivalent to rg; = 2.5.

It takes 12.2 h and 0.43 GB memory to extract the TD-GTM
matrices [C]. Then, the TD-GTM module is applied for an an-
tenna array, whose size ranges from 2 x 2 to 10 x 10, and the
distances between the centers of two adjacent elements in y-
and z-direction are Ay = 12 cm, Az = 5.8 cm, as is shown in
Fig. 6.

In Table I, we list the CPU time and memory cost by the
TD-GSIE and MOT solvers when filling the [D];, matrices for
different array sizes. Note that since the [D]; matrices are the
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Fig. 6. Configuration for the Vivaldi antenna array (a) original structure and
(b) enclosed by the Huygens surfaces.
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Fig. 7. Results of the 6 x6 Vivaldi array: (a) currents on the reference surface
of one element; (b) RCS results at 2.4 GHz (azimuth angle ¢ = 0).

TABLE 1
COMPUTATION COST FOR THE ANTENNA ARRAY

Number Number of [D]x filling [D] filling
Array . .
size of [D.]" unknowns time/memory time/memory
matrix  TD-GSIE/MOT _ cost for TD-GSIE cost for MOT
2%2 8 2832/8184 2.2hrs/1.39GB 10.4hrs/8.9GB
4*4 48 11328/32736 13.4hrs/8.2GB 60.2hrs/42.1GB
6*6 120 25488/73656 35.1hrs/20.4GB -
8*8 224 45312/130944 65.6hrs/37.9GB -
10*10 360 70800/204600 108.2hrs/60.5GB -

same if the two pairs of coupling blocks have the same rela-
tive displacement vector, we only need to calculate a minimum
number of different [ D] matrices, which is specified in Table I.
The TD-GSIE solver has dominant advantages in both time and
memory consumption. When the array size is extended to 6x6,
it is beyond the capability of our computer using the traditional
MOT solver.

To show the stability and accuracy of the TD-GSIE solver,
numerical results for the 6 x6 array are provided. Currents of
the observed RWG on the reference surface of one antenna are
plotted in Fig. 7(a). RCS results at 2.4 GHz are compared to
MoM in Fig. 7(b), of which the relative Ly error is 2.1%. This
error can be caused by the compression of the degree of freedom
on the Huygens surfaces as well as the limited truncation length
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of the impulse responses. For this antenna array analysis, the
method in [2] poses a great advantage for the application of
the synthetic basis function (SBF) technique, which can fur-
ther compress the unknowns of the reference surfaces. How-
ever, for the method in [2], series of simulations at different
sampling frequencies will be needed in order to get the wide-
band information.

V. CONCLUSION

The TD-GTM and TD-GSIE are proposed for the transient
scattering analysis of arrays. MOT solvers based on different
TDIE equations like Miiller, EFIE, and PMCHWT are applied to
extract the TD-GTM. The TD-GSIE employing TD-GTM mod-
ules are implemented for array structures. The efficiency, accu-
racy, and stability of TD-GSIE are verified through numerical
experiments.
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