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A Discontinuous Galerkin Augmented Electric Field
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Scattering Problems
Yibei Hou, Student Member, IEEE, Gaobiao Xiao, Member, IEEE, and Xuezhe Tian, Member, IEEE

Abstract— A discontinuous Galerkin (DG) augmented
electric field integral equation method based on the domain
decomposition is proposed in this paper for full-wave solution of
multiscale targets. The conventional surface integral equation-
based DG method allowing both conformal and nonconformal
discretizations for multiscale structures suffers from low-
frequency breakdown. By augmenting the DG-EFIE with
current continuity equation, the proposed scheme can alleviate
the low-frequency breakdown. In the augmented system,
the electric field integral equation and the current continuity
equation are discretized by using hybrid basis functions including
Rao–Wilton–Glisson (RWG) and half RWG basis functions.
Since the half RWG basis is not divergence conforming, line
charge degrees of freedom on the adjoining edges are introduced
in this paper. It is observed that the resulting linear system
is well conditioned at low frequencies, which leads to a rapid
convergence over wide frequency band. Numerical examples
demonstrate the accuracy and efficiency of the augmented system.

Index Terms— Augmented electric field integral equa-
tion (AEFIE), discontinuous Galerkin (DG), low frequency,
multiscale targets.

I. INTRODUCTION

SURFACE integral equation (SIE) [1]–[4] formulations
provide a convenient technique for analyzing time-

harmonic electromagnetic problems. Although volume integral
equation can be used to solve electromagnetic problems, it
requires volume discretization and the number of unknowns
is large. When the perfectly electrical conducting (PEC) struc-
tures are studied, the magnetic field integral equation and the
combined field integral equation cannot be used to model open
structures, while the electric field integral equation (EFIE) can
do. The EFIE is very popular in computational electromag-
netic community because of its excellent accuracy. Usually,
div-conforming basis functions, for example, the Rao–Wilton–
Glisson (RWG) basis functions [1], are chosen as test and
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trial basis functions for the EFIE. Consequently, the normal
continuity of the surface current is enforced automatically.
Since each RWG basis function is defined on a pair of adjacent
triangles, the mesh is required to be conformal. However, it
is time consuming to generate a conformal discretization for
the multiscale targets where large frames and fine features
coexist. For the multiscale objects, it is apparent that we can
first divide the targets into several subdomains according to
the domain decomposition [5]–[7] concept, and generate the
mesh of every parts independently. Unfortunately, nonconfor-
mal discretization is well encountered along the tearing lines
between adjacent subdomains.

In the effort devoted to handling nonconformal meshes,
discontinuous Galerkin (DG) methods [8]–[10] have received
much attention recently. From the perspective of DG, the
normal continuity is weakly enforced and the discontinuity
is allowed along the contours. DG has been very popular with
finite-element method, especially the DG time domain which
is widely used for solving electromagnetic problems such
as scattering problems [11]–[13], integrated circuit systems
[14]–[16], and so on. Recently, DG-SIE method [17], [18]
has been proposed to extend the DG method to SIEs for
electromagnetic scattering problems. The main difficulty of the
combination of DG and SIE, especially the EFIE, is to handle
the normal discontinuity of the currents across boundary
contour. The DG-SIE method shows great flexibility in the
mesh preparation and local refinement.

EFIE suffers from the low-frequency breakdown
[4], [19]–[24] due to the decoupling of the fields produced
by electric currents and charges at low frequencies. When the
simulation frequency decreases, the EFIE impedance matrix
becomes increasingly ill conditioned and hence is hard to be
solved accurately and efficiently. There are several approaches
existing for overcoming the low-frequency breakdown of the
EFIE. Quasi-Helmholtz decomposition-based methods, such
as loop-star (LS) [19], [20] and loop-tree (LT) [4] decom-
position, separate the current into divergence-free current
and nondivergence-free current; hence, the conditioning is
improved at low frequencies. However, it is difficult to employ
the quasi-Helmholtz decomposition adopting half RWG basis
functions in DG-EFIE. The augmented EFIE (AEFIE) [2],
[3], [25]–[27] offers an attractive way to renormalize the EFIE
and hence eliminates the low-frequency breakdown without
searching for LS/LT basis functions. Although the above
methods are efficient for low-frequency problems, they cannot
handle multiscale targets with nonconformal discretization.
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Fig. 1. Electromagnetic plane wave scattering from a PEC structure, whose
surface is decomposed into two parts.

In this paper, the DG-EFIE is augmented by current con-
tinuity equation [2]; hence, the DG-AEFIE formulation is
introduced for the full-wave analysis of multiscale structures
with nonconformal meshes. The DG-AEFIE based on domain
decomposition concept is nonconformal in nature, allowing
local mesh refined. The continuity of currents across the inter-
faces between neighboring domains is weakly enforced via
DG scheme. On the nonconformal meshes along the interfaces
between adjacent subdomains, half RWG basis functions are
defined while RWG basis functions are defined elsewhere.

Our work and the method in [28], based on DG and AEFIE,
aim to solve the multiscale problems with nonconformal
meshes over wide frequency range. However, our approach is
different from [28] in the following aspects. First, our method
introduces line charge to represent the discontinuity of the
normal current across the contour interface. With the aid of
line and surface charge, the current continuity equation can
be properly implemented at the interfaces between adjacent
subdomains. Second, the proposed DG-AEFIE does not move
the line-face integral of the scalar term to the vector term. We
separate the vector term and scalar term by adding surface
and line charges to the unknown; consequently, the imbalance
inherited from the conventional EFIE can be avoided. Third,
charge neutrality is enforced to remove rank deficiency of
the DG-AEFIE at low frequencies. Finally, the proposed
scheme is well conditioned over frequencies and efficient
for nonconformal meshes. It is worth noting that the term
low frequencies refers to the case that the simulated structure
is smaller than a wavelength. With the proposed method, both
the conformal and the nonconformal mesh can be handled with
great flexibility.

This paper is organized as follows. Section II introduces
the formulation of DG-AEFIE and the associated pertur-
bation method. In addition, preconditioning for DG-AEFIE
is described. In Section III, several numerical examples
are shown to validate the accuracy and the efficiency of
the proposed method. Finally, some concluding remarks are
summarized in Section IV.

II. DISCONTINUOUS GALERKIN AUGMENTED

ELECTRIC FIELD INTEGRAL EQUATION

A. Formulation of DG-AEFIE

Consider a plane wave scattering from a PEC structure
in Fig. 1 where the structure is divided into two parts. For
simplicity, we assume the surface of the PEC structure S and
its decomposition S = S1 ∪ S2. In addition, we define the

interior contour of Si between Si and Sj as Ci j . The vector t̂ i j

stands for the outward-directed on-plane unit vector of the
contour, which points from Si to Sj . By relating the incident
electromagnetic field Einc to scattered field generated by the
surface current J , the EFIE can be written as

n̂ × jk0

∫
S

(
1 + 1

k2
0

∇∇·
)

J(r ′)G(r, r ′)d S′ = 1

η0
n̂ × Einc(r)

(1)

where n̂ is the normal vector of the PEC surface S, k0 and
η0 denote the free-space wave number and impedance, respec-
tively, and G(r, r ′) = e− j k0|r−r ′|/4π |r − r ′| denotes the free-
space Green’s function. The PEC surface S is discretized into
NS triangles (Ti , i = 1, . . . , NS ) and NE inner edges. The
surface current is expanded by hybrid basis functions

J(r) =
NR∑

m=1

jRm f R
m(r) +

NH∑
n=1

jHn f H
n (r) (2)

where f R
m ((r)), m = 1, . . . , NR , and f H

n ((r)), n = 1,. . . ,NH ,
are modified RWG basis and modified half RWG basis without
the edge length normalization [2], [25], [26] in this paper.
NR and NH are the number of RWG basis functions and half
RWG basis functions, respectively. The RWG basis is defined
on a pair of triangles of Si , while the half RWG basis is defined
on the triangle along the contour Ci j . It should be noted here
that the interface meshes on Si and Sj allow to be conformal
and nonconformal.

The RWG basis is divergence conforming [1], [2], while the
half RWG is not divergence conforming since there is addi-
tional part on the reference edge in the divergence formulation
of the half RWG

∇ · f H
n (r) =

⎧⎨
⎩

1

Ai
− δ(r − r Li )/ li , r ∈ Ti

0, otherwise
(3)

in which f H
n (r) is defined on the triangle whose area is Ai ;

in addition, Li denotes the reference edge of f H
n (r) and its

length is li . Besides the current basis functions, charge basis
functions including surface charge basis functions and line
charge basis functions are also defined in this method. The
surface charge basis

hs
i (r) =

⎧⎨
⎩

1

Ai
, r ∈ Ti

0, otherwise
(4)

is defined on the triangle Ti . For each edge C Ln,
n = 1, . . . , NL , along the interface line between adjacent
subdomains, we define the line charge basis as

hl
n(r) =

{
δ(r − rC Ln), r ∈ C Ln

0, otherwise.
(5)

For instance, the interface mesh on two subdomains is non-
conformal in Fig. 2 and there are NL = 6 line charge basis
functions on the contour line. With the aid of the charge basis,
the divergence of RWG basis can be expressed by

∇ · f R
m(r) =

NS∑
i=1

D
RS
im hs

i (r) (6)
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Fig. 2. Half RWG basis functions are defined on the triangles (gray) along
the interface contour. There are six line charge basis functions (inside the
black ring) placed on the contour line.

with

[D
RS]im =

⎧⎪⎨
⎪⎩

1, Ti is the positive triangle of f R
m

−1, Ti is the negative triangle of f R
m

0, otherwise.

(7)

The divergence of half RWG basis functions can be given
by

∇ · f H
m (r) =

NS∑
i=1

D
HS
im hs

m(r) +
NL∑

n=1

D
HL
nm hl

n(r) (8)

in which the matrix D
HS ∈ R

NS×NH is similar to the matrix
D

RS ∈ R
NS×NR which links the current basis and the charge

basis. The element of matrix D
HL ∈ R

NL ×NH can be given
by

[D
HL]nm =

⎧⎨
⎩

−1

lm
, hl

n is on the reference edge of f H
m

0, otherwise
(9)

where lm is the length of the reference edge of f H
m .

In the DG-SIE method [5], [17], [18], the test basis space
is allowed to be discontinuous across the interface contours
between adjacent subdomains. In our work, both the RWG
basis and half RWG basis are chosen as testing basis and the
EFIE (1) can be converted into matrix form(

jk0Ṽ + 1

jk0
D̃T · P̃ · D̃

)
· j = η−1

0 b. (10)

The vector potential matrix Ṽ ∈ C
(NR+NH )×(NR+NH ) can be

written by

Ṽ =
[

V
RR

V
RH

V
HR

V
HH

]
(11)

where

[V RH]mn =
∫

Sm

f R
m(r) ·

∫
Sn

f H
n (r ′)G(r, r ′)d S′d S. (12)

The rest three submatrices in (11) can be obtained by changing
the trial and test functions in (12). The sparse matrix
D̃ ∈ R

(NS+NL )×(NR+NH ) is given by

D̃ =
[

D
RS

D
HS

0 D
HL

]
. (13)

The patch-line-based scalar potential matrix P̃ ∈
C

(NS+NL )×(NS+NL ) denotes the coupling between any
two charge basis functions

P̃ =
[

P
SS

P
SL

P
LS

P
LL

]
(14)

in which the matrix P
SS ∈ C

(NS×NS ) is the same as
[2, eq. (3)]. The other matrix elements are

[P
SL]mn =

∫
Sm

hs
m(r)

∫
Ln

hl
n(r ′)G(r, r ′)d L ′d S (15)

[P
LL]mn =

∫
Lm

hl
m(r)

∫
Ln

hl
n(r ′)G(r, r ′)d L ′d L . (16)

The entries in P
LS ∈ C

NL ×NS can be similarly com-
puted by exchanging the inner and outer basis functions
in (15). For (16), it becomes infinitely large when the
observation point is located in the source line. Similar
to the DG approach in [17], we add a boundary term
− ∫

Lm
hl

m(r)
∫

Ln
hl

n(r)G(r, r ′)d L ′d L to the right-hand side
in (16). It is noted that this boundary term will vanish. In order
to weakly enforce the normal continuity of the current across
the subdomain boundaries, we add an interior penalty (IP) [17]
term to the line-based scalar potential matrix P

LL ∈ C
NL ×NL .

Hence, the element of the matrix P
LL

can be rewritten by

[P
LL]mn = β

∫
Cmn

∫
Cmn

hl
m(r)hl

n(r ′)/ l ′nd L ′d L (17)

where l ′n denotes the length of the domain of hl
n and β is the

IP stabilization function, which is taken as β = αh−1. Here,
h is the average length of mesh edges while the stabilization
parameter α is positive and can be chosen as 20 log(λ/h).
Since the integration domain in (17) is the common region
between hl

m and hl
n , P

LL
mn equals zero when m does not equal n.

In [5], [17], and [18], the DG-EFIE shows great flexibility
and high efficiency to analyze multiscale targets. However,
as the frequency decreases, the scalar term overwhelms the
vector term and the conditioning becomes worse. Hence,
it is hard to solve DG-EFIE accurately and efficiently at
low frequencies. By augmenting the DG-EFIE with current
continuity equation [2], the conditioning of DG-EFIE can be
improved. The current continuity equation is discretized as

D̃ · j = − jωρ (18)

where the vector j ∈ C
(NR+NH )×1 stands for the coeffi-

cients of RWG and half RWG basis functions and the vector
ρ ∈ C

(NS+NL )×1 denotes the coefficients of surface and line
charge basis functions. Combining (10) and (18), we can
obtain the formulation of DG-AEFIE[

Ṽ D̃
T · P̃

D̃ k2
0 Ĩ

]
·
[

jk0 j
c0ρ

]
=

[
η−1

0 b
0

]
(19)

where the dimension of identity matrix Ĩ is NS + NR .
Charge neutrality [2] is applied to avoid the rank defi-

ciency of (19) at low frequencies. A charge unknown should
be dropped from each unattached object; hence, the charge
coefficient vector is reduced to be ρr ∈ C

(NS+NR −t)×1,
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where t stands for the number of disconnected objects. Here,
two mapping matrices F̃ ∈ R

(NS+NL −t)×(NS+NL ) and B̃ ∈
R

(NS+NL )×(NS+NL −t) between the charge coefficient vector
and reduced charge coefficient vector can be defined as

ρr = F̃ · ρ, ρ = B̃ · ρr . (20)

After applying charge neutrality constraint, the reduced
formulation of DG-AEFIE can be written as[

Ṽ D̃
T · P̃ · B̃

F̃ · D̃ k2
0 Ĩr

]
·
[

jk0 j
c0ρr

]
=

[
η−1

0 b
0

]
(21)

in which Ĩr ∈ R
(NS+NL −t)×(NS+NL −t) is an identity matrix.

The conditioning of the proposed DG-AEFIE is stable over
wide frequencies without imbalance between the vector poten-
tial and scalar potential. In addition, the DG-AEFIE provides
an easy way to analyze the multiscale structure at low fre-
quencies with both conformal and nonconformal meshes.

B. Perturbation Method for DG-AEFIE

The DG-AEFIE loses accuracy of current for plane
electromagnetic scattering problems at extremely low
frequencies. In order to remedy the low-frequency inaccuracy
problems, the perturbation method [26], [30] is incorporated
into DG-AEFIE. When the operation frequency is extremely
low (|k0 R| � 1), the Green’s function can be approximated as

G(r, r ′) ≈ 1

4π R

[
1 + (− jk0 R) + 1

2
(− jk0 R)2

]
(22)

where the truncation error for e− j k0 R is {(− jk0R)3/6 +
O((− jk0 R)4)}. The second order is enough in our work if
|k0 Rmax|3/6 < 1 × 10−7 [30]. By expanding the Green’s
function in the DG-AEFIE, we have

Ṽ = Ṽ (0) + δṼ (1) + δ2Ṽ (2) + O(δ3) (23)

P̃ = P̃
(0) + δ P̃

(1) + δ2 P̃
(2) + O(δ3) (24)

b = b(0) + δb(1) + δ2b(2) + O(δ3) (25)

j = j (0) + δ j (1) + δ2 j (2) + O(δ3) (26)

ρr = ρ(0)
r + δρ(1)

r + δ2ρ(2)
r + O(δ3) (27)

in which δ = − jk0. At low frequencies, Ṽ ≈ Ṽ (0)
and

P̃ ≈ P̃ (0)
because the zeroth-order Green’s function is

the original form of Green’s function in static regime. The
different order of matrix Ṽ and vector b̃ can be found in [26].
It should be noted that the matrix P̃ is different from that
in [26] since we choose line charge basis functions in our
method. In the matrix P̃ , the expansion of the submatrix P

SS
,

P
SL

, and P
LS

can be easily obtained by replacing the Green’s
function using (22). For the line-line scalar potential, we have

P̃LL(0) = P̃ (28)

P̃
LL(1) = 0 (29)

P̃
LL(2) = 0. (30)

It is obvious that all the matrices and vectors are frequency
independent. The different order of the solution of current
and charge can be obtained accurately in a recursive
style [26], [30].

C. Preconditioning for DG-AEFIE

Even the conditioning of the DG-AEFIE and DG-AEFIE
with perturbation maintains stable when the frequency varies
from the low frequency to the high frequency, the number
of iterations is not so satisfactory. Inspired by the work in
[25] and [31], a block matrix preconditioner can be incorpo-
rated into the proposed method to improve the iteration. The
preconditioned linear discretized system is

Z · P−1 · I = V . (31)

In (32), Z denotes the impedance matrix of the DG-AEFIE
in (29), and I and V represent the coefficient and excitation
vectors, respectively. The impedance matrix Z can be approx-
imated by a sparse form as

P ≈
[

diag(Ṽ ) D̃
T · diag( P̃) · B̃

F̃ · D̃ k2
0 Ĩr

]
(32)

and its inverse can be adopted as a preconditioner which can
be written by

P−1 =
[

X
−1

0
0 0

]
+

[
−X

−1 · Y
I r

]
· 	−1 · [−W · X

−1
I r ]
(33)

where

X = diag(Ṽ ) (34)

Y = D̃
T · diag( P̃) · B̃ (35)

W = F̃ · D̃ (36)

� = k2
0 I r − W · X

−1 · Y . (37)

Since the matrix X is a diagonal matrix, its inverse can be
easily obtained. For the preconditioner of DG-AEFIE with
perturbation method, the matrix Ṽ and P̃ in (33) are replaced
by their zero-order forms.

III. NUMERICAL RESULTS

In this section, the proposed method is demonstrated by
several numerical examples. At first, the electromagnetic scat-
tering from a PEC sphere was analyzed with conformal mesh
using the proposed method. It was followed by the analysis
of a cone divided into three parts where the mesh was locally
refined. Finally, the proposed method was used to compute
the scattering problems of a PEC chip and a complicated ship
model with nonconformal mesh. Assume that a plane wave
with amplitude of 1 V/m illuminates on the scatters along the
−z axis. In this paper, a Krylov subspace iterative method,
GMRES [32] with a restart of 30, was chosen to solve the
final linear system. We use a relative residual error ε of 10−8.

A. Plane Wave Scattering From PEC Sphere

We first analyze the electromagnetic scattering from a PEC
sphere with radius 0.5 m. The sphere was discretized into a
conformal mesh with 1458 triangles. In the view of domain
decomposition concept, the conformal discretization can be
regarded as that the sphere is discretized into 1458 subdomains
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Fig. 3. Condition number of the impedance matrices of DG-AEFIE with/
without preconditioner, DG-EFIE, and EFIE-LS as electric size varies.

Fig. 4. Comparison of the RCS of a PEC sphere at 105 Hz (electric mesh
size: 2.37×10−5). The RCS results are computed by DG-AEFIE, DG-AEFIE
with perturbation method, and the algorithm in [28]. The reference solution
is calculated by the Mie series.

and 4374 interface contour edges between two adjacent sub-
domains. Since there is only one triangle in each subdomain,
three half RWG basis functions are defined on every sub-
domain. Consequently, 4374 half RWG basis functions were
used to expand the surface current, 1458 surface charge basis
functions, and 4374 line charge bases are chosen to expand
the charge. In order to estimate the accuracy of the result, we
define the relative error as 20log(||R1 − R0||2/||R0||2). Here,
||·||2 means 2-norm, and R0 and R1 denote the reference result
and the result computed by the proposed method, respectively.

We first examine the condition number of the impedance
matrices of DG-AEFIE with/without preconditioner,
DG-EFIE, EFIE-LS, and the proposed method in [28]
over a very wide frequency band and the electric mesh
size (h/λ) ranges from 7.10 × 10−15 to 7.10 × 10−2. In
Fig. 3, it is apparent that the system matrices of DG-AEFIE
with/without preconditioner and EFIE-LS almost have a
constant conditioner number over frequencies while the
condition number of DG-EFIE increases as the electric size
decreases. Obviously, the conditioning of DG-AEFIE with
preconditioner is better than the other three ones.

Fig. 4 shows the far-field RCS at θ = [0°, 180°] calculated
by the proposed method at 105 Hz. From the results, it can be

Fig. 5. Comparison of the RCS of a PEC sphere at 3 × 10−5 Hz (electric
mesh size: 7.10 × 10−15). The RCS data are computed by DG-AEFIE
with perturbation method, EFIE with LS basis functions, DG-EFIE, and
DG-AEFIE. The reference solution is calculated by the Mie series.

TABLE I

RELATIVE ERROR OF THE SURFACE CURRENT

found that both the DG-AEFIE and DG-AEFIE with pertur-
bation method have no breakdown and inaccuracy problems.
However, the result calculated by the method in [28] is not
correct. Fig. 5 compares the RCS data at 3 × 10−5 Hz. The
results calculated by DG-AEFIE with perturbation method and
EFIE-LS agree well with the Mie series solution. However, the
result of DG-AEFIE without perturbation method is wrong due
to the low-frequency inaccuracy of current.

The relative error of the surface current calculated by
using DG-AEFIE with/without perturbation method is shown
in Table I. The stabilization parameter α was chosen to be
α1(= 0.1), α2(= 1), and α3(= 20 log(λ/h)). From Table I,
it can be seen that the relative error of DG-AEFIE without
perturbation method becomes larger when the electric size
decreases. However, the DG-AEFIE with perturbation method
is accurate even at extremely low frequency. Among α1, α2,
and α3, the result of DG-AEFIE with perturbation method is
the most accurate when α = α3.

B. Plane Wave Scattering From PEC Cone

In this numerical example, a PEC cone target was ana-
lyzed. The height and base radius of the cone are 1.5 and
0.6 m, respectively. As shown in Fig. 6, the cone was
decomposed into three sections, and every section was dis-
cretized with different mesh size independently. The final
generated mesh is nonconformal. The average mesh size
of each part is 0.1543, 0.0498, and 0.0126 m. There are
4064 triangles and 6068 inner edges in the top subdo-
main, 968 triangles and 1416 inner edges in the midsub-
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Fig. 6. Comparison of the RCS of a PEC cone at 10−3 Hz. The RCS results
are computed by DG-AEFIE with perturbation method, and the stabilization
parameter is α1 and α3. The reference result is obtained by the method in [26]
with conformal mesh.

Fig. 7. Convergence history of the DG-AEFIE with perturbation method
at 10−3 Hz.

domain, and 240 triangles and 349 inner edges in the
bottom subdomain. Totally, 7833 RWGs, 150 half RWGs,
5272 surface charge bases, and 100 line charge bases
were generated. Fig. 6 shows the RCS of the PEC cone
at 10−3 Hz. The result calculated by DG-AEFIE with pertur-
bation method is practically identical to the reference solution
when the stabilization parameter is α1 and α3. Shown in Fig. 7
is the convergence history of the DG-AEFIE with perturbation
method when the stabilization parameter is α1 and α3. The
iteration step required for convergence associated with the
two stabilization parameters almost equal to each other. From
Figs. 6 and 7, it can be seen that the accuracy and convergence
of the DG-AEFIE with perturbation method is not sensitive
to the choice of the stabilization parameter when the mesh is
nonconformal. Fig. 8 shows the surface current distributions of
the PEC cone at 10−3 Hz. The result obtained by DG-AEFIE
with perturbation method agrees well with EFIE-LS.

C. Plane Wave Scattering From PEC Chip

In the third numerical example, a PEC chip was analyzed.
In Fig. 9, the chip lies in the yz plane and the x-axis is
perpendicular to the paper. There are 18 legs with distance of
0.027 cm between each other at left and right sides of the chip,

Fig. 8. Surface current distributions of PEC cone at 10−3 Hz. (a) DG-AEFIE
with perturbation method. (b) EFIE-LS (conformal mesh).

Fig. 9. Nonconformal mesh of a PEC chip.

Fig. 10. Surface current distribution of the PEC chip at 1 Hz. (a) DG-AEFIE
with perturbation method. (b) EFIF-LS (conformal mesh).

respectively. The length of chip along the z-direction is 1 cm,
while 1.034 cm along the y-direction. The chip was divided
into two parts. The first part is the main body (blue in Fig. 9) of
the chip, and the second part consists of 36 legs (red in Fig. 9).
The two parts were discretized independently. It is obvious
that the mesh along the contour between main body and every
leg is nonconformal in Fig. 9. In the mesh of main body,
there are 6950 triangles and 10 353 inner edges. Each leg
of the chip was discretized into 340 triangles and 506 inner
edges. Consequently, in the final DG-AEFIE system, there
are 28 569 RWGs, 432 half RWGs, 19 190 surface charge
basis functions, and 288 line charge basis functions.

Fig. 10 shows the surface current distributions of the PEC
chip at 1 Hz. The results were calculated by DG-AEFIE
with perturbation method and EFIE-LS with conformal mesh.
As can be seen from Fig. 10, the current distributions are
alike without noticeable differences between the two results.
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Fig. 11. Nonconformal mesh of a PEC ship.

Fig. 12. Comparison of the RCS of a PEC ship at 103 Hz. The RCS data are
computed by DG-AEFIE with perturbation method and EFIE-LS (conformal
mesh).

It took 107 steps to convergence for DG-AEFIE with pertur-
bation method, while EFIE-LS could not converge even after
10 000 steps.

D. Plane Wave Scattering From PEC Ship

At the last example, the low-frequency electromagnetic
scattering from the PEC ship was analyzed. As shown in
Fig. 11, the PEC ship was decomposed into seven parts in
different colors. The large platform comprises several fine
structures and components. The ratio of the maximum edge
length versus the minimum edge length is 594.84, much
larger than the above examples. The RCS was computed and
compared against the one that was obtained by fully conformal
meshes using EFIE-LS. A good agreement of the RCS is
shown in Fig. 12. It took 208 steps for the DG-AEFIE with
perturbation method to converge. Since DG-AEFIE is efficient
to handle nonconformal meshes, we can generate the fine
meshes for the thin structures to capture the geometry feature
and coarse mesh for the platform at the low frequencies, and
locally refine the mesh of the platform at the high frequencies
with great flexibility.

IV. CONCLUSION

The DG-AEIF formulation is presented in this paper.
It combines the domain decomposition method based on
DG with AEFIE formulation. The transmission condition
between adjacent subdomains is enforced with the aid of
DG. Inheriting the well-conditioned advantage of the AEFIE,

the proposed method converges fast over wide frequency band
after preconditioning. In addition, it is efficient to analyze
the multiscale targets by using nonconformal discretization
with great flexibility. The numerical examples demonstrate the
excellent performance of the proposed method.
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