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Abstract— Since accurate thermal analysis plays a critical role
in the thermal design and management of the 3-D system-level
integration, in this paper, a discontinuous Galerkin time-domain
(DGTD) algorithm is proposed to achieve this purpose. Such as
the parabolic partial differential equation (PDE), the transient
thermal equation cannot be directly solved by the DGTD method.
To address this issue, the heat flux, as an auxiliary variable,
is introduced to reduce the Laplace operator to a divergence
operator. The resulting PDE is hyperbolic, which can be further
written into a conservative form. By properly choosing the
definition of the numerical flux used for the information exchange
between neighboring elements, the hyperbolic thermal PDE can
be solved by the DGTD together with the auxiliary differential
equation. The proposed algorithm is a kind of element-level
domain decomposition method, which is suitable to deal with
multiscale geometries in 3-D integrated systems. To verify the
accuracy and robustness of the developed DGTD algorithm,
several representative examples are benchmarked.

Index Terms— Auxiliary-differential equation (ADE) method,
discontinuous Galerkin time-domain (DGTD) method, integrated
circuit package, numerical flux, transient thermal analysis.

I. INTRODUCTION

FOLLOWING the Moore’s law, the number of transistors
in a single chip has raised from a few thousands in

1970s to several billions in 2010s, while the electrical size
has been continuously downscaling. Further fueled by the
advanced 3-D packaging technologies such as system on pack-
age [1], [2] and interconnection technologies like the through
silicon-vias (TSV) [3], heterogeneous modules and chips are
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capable of being vertically stacked up together by TSVs
and redistribution traces, which thus makes the possibility to
integrate multiple different functional modules into a limited
space. On the other hand, it simultaneously brings significant
challenges in the thermal management. Improper thermal
designs would not only degrade the system performance, but
also lead to serious reliability issues. Therefore, accurate and
robust thermal analysis is essential at the design stage.

To achieve this purpose, numerous modalities have been
proposed in the past decades to characterize the thermal
properties of the integrated circuits, for instance, the ana-
lytical approaches [4] and numerical algorithms such as the
finite element method (FEM) [5], [6] and finite difference
method (FDM) [7]–[9]. The analytical method in [4] pro-
posed an equivalent thermal circuit model to describe the
temperature variation, which is convenient and efficient to
provide a guideline at the design stage although it is not
comprehensive and exactly rigorous. Recently, researchers
proposed a noniterative heat transfer model [10], [11] to
predict the steady-state temperature distributions in 3-D chips,
the accuracy of the analytical method is comparable to FEM.
On the other hand, the numerical methods are rigorous but less
efficient. In [5] and [6], to handle the multiscale properties of
the 3-D integrated circuit packages, a domain decomposition
method (DDM)-based FEM was proposed, which converges
significantly fast while conventional FEM would fail to con-
verge. In [12]–[14], the efficiency of the FEM is further
improved by the parallel computing techniques. Thus, more
complicated structures can be modeled within less compu-
tational cost. Besides the FEM, in [7] and [8], the FDM
was employed to facilitate the thermal analysis. Specifi-
cally, an equivalent circuit network was derived based on
the FDM formulated equations in [9] that builds up the
relation between thermal models and equivalent circuit net-
works. In [15] and [16], an FDM-based thermal solver named
“HotSpot,” which is based on the equivalent circuit of thermal
resistance and capacitances of microarchitecture blocks, is
widely applied to analyze thermal distributions of integration
circuits. Compared to the FEM, the FDM is more convenient
and simple to implement, but lacks the flexibility to address
irregular geometries.

In this paper, a discontinuous Galerkin time-domain
(DGTD) method [17]–[20] is proposed to conduct the transient
thermal analysis for complicated integrated circuits packages.
Compared to the finite-difference time-domain method, the
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DGTD method is capable of modeling arbitrary shapes and
simultaneously can achieve high-order accuracy by adopt-
ing hierarchical basis functions. Similar to the finite vol-
ume method [21], all operators in the DGTD analysis are
local, and the information exchange between the neighboring
mesh elements is implemented by a term called numeri-
cal flux. Therefore, unlike FEM, the matrix equations are
locally established with dimension equal to the number of
degrees of freedom in the corresponding mesh element. Thus,
the formulated mass-matrices are block-diagonal and can be
directly inverted with negligible computational cost. Since the
solutions across the interfaces of adjacent elements are allowed
to be discontinuous, the DGTD method owns more flexibilities
to choose the type and the order of basis functions in each
element [22]. In fact, the DGTD method can be considered as
an element-level DDM. Therefore, the DGTD method is more
preferable for large and/or multiscale geometries in which a
large number of heterogeneous meshes are involved [23]. If
the conventional FEM was used, the ill-conditioned matrix
equations resulted from inhomogeneous mesh elements would
converge very slowly or even not converge at all. Alterna-
tively, the complicated domain decomposition FEM has to be
resorted [5], [6].

Since the DGTD method is amenable to the hyperbolic
systems, the thermal equation as a parabolic partial differ-
ential equation (PDE) is thus unable to be solved by the
DGTD algorithm directly [17]. To handle this problem, an
auxiliary variable named heat flux is introduced with the
aim to degenerate the high-order spatial differential operator
(Laplace operator ∇2) to a first-order operator (divergence
operator ∇·). Then, the thermal equation is transformed to
be a hyperbolic PDE that can be written into a conservative
form. Together with the differential equation governing the
auxiliary variable, the newly constructed thermal equation can
be solved by the DGTD method. To validate the feasibility, the
accuracy, and the robustness of the developed DGTD method,
several representative examples including the 3-D integration
with complex structures are given.

The remainder of this paper is organized as follows. In
Section II, the theory and mathematical details about the
degeneration of the parabolic equation to a hyperbolic one and
the formulation matrix equations by the DGTD method are
described. In Section III, numerical examples are presented to
validate the proposed algorithm. Conclusions and discussions
are given at the end of this paper.

II. THEORY AND MATHEMATICAL FORMULATION

Suppose that the domain of interest for the thermal analysis
is denoted as � and simultaneously bounded by the boundary
∂�, its temporal temperature variation in this thermal sys-
tem is governed by a first-order time-derivative PDE defined
as [5], [12]

∇ · κ∇T + Q = ρmcρ
∂T

∂ t
(1)

where T denotes the temperature distribution, κ represents
the thermal conductivity, Q is the heat source, and ρm and
cρ are the mass density of the material and specific heat

capacity, respectively. To solve (1), we have the Dirichlet
boundary condition at the boundary ∂�

T = T∂� (2)

and the convection boundary condition

n̂ · κ∇T = −h(T − Ta) (3)

or

κ
∂T

∂n
= −h(T − Ta) (4)

with n̂ representing the unit outward normal vector perpendic-
ular to the boundary surface, and h and Ta denoting the con-
vective heat transfer coefficient and the ambient temperature,
respectively.

Since the PDE in (1) is a parabolic differential equation, the
DGTD algorithm cannot be straightforwardly applied to solve
it. Instead, (1) has to be transformed to a hyperbolic equation
that is able to be written into a conservative form. Motivated
by this aim, an intermediate vector variable q(x, y, z, t) is
introduced, which is given by

q(x, y, z, t) = −κ∇T . (5)

The auxiliary variable q actually denotes the heat flux or the
rate of heat transfer through a surface per unit time.

With the auxiliary equation (5), the second-order spatial-
derivation (the Laplace operator) in (1) can be decreased to
a first-order divergence operator. Consequently, (1) can be
rewritten as

−∇ · q + Q = ρmcρ
∂T

∂ t
(6)

which is now in a form of conservation.
In this paper, the main focus is to validate the feasibility

of DGTD method in solving the transient thermal equation,
where the thermal conductivity and the specific heat capacity
in (5) and (6) are assumed to be temperature independent.
The temperature-dependent situation will be investigated in
the future DGTD-based electrical-thermal cosimulation solver,
in which the electrical conductivity is also considered to be
temperature dependent.

To solve (5) and (6) by the DGTD method, the computa-
tional domain � is first split into a number of nonoverlapping
polyhedron elements �i (In this paper, tetrahedrons are used
to flexibly model the irregular geometries). In each element i ,
the nodal basis functions ψ(r), φ(r), ϕ(r), and γ (r) are
employed to approximate T , qx , qy , and qz , respectively.
By implementing the DG testing over (5) and each component
of (6), we have

ρmcρ

∫
�i

ψ i
k
∂T i

∂ t
dV =

∫
�i

ψ i
k

(
−∇ · qi + Qi

)
dV (7)

∫
�i

φi
kqi

xdV = −κ
∫
�i

φi
k · ∇x T i dV (8)

∫
�i

ϕi
kqi

ydV = −κ
∫
�i

ϕi
k · ∇y T i dV (9)

∫
�i

γ i
k qi

zdV = −κ
∫
�i

γ i
k · ∇z T i dV (10)

with ∇x T = ∂x T , ∇yT = ∂yT , and ∇z T = ∂z T .
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Based on the integration by parts and the Gaussian theorem,
we have weak formulations of (7)–(10) defined as

ρmcρ

∫
�i

ψ i
k
∂T i

∂ t
dV =

∫
�i

(
qi · ∇ψ i

k + ψ i
k Qi

)
dV

−
4∑

f =1

∫
∂�

f
i

ψ i
k n̂i

f · q∗
f d S (11)

∫
�i

φi
kqi

x dV = κ

∫
�i

T i∇xφ
i
kdV

− κ
4∑

f =1

∫
∂�

f
i

ni
x, f T ∗

f φ
i
kd S (12)

∫
�i

ϕi
kqi

ydV = κ

∫
�i

T i∇yϕ
i
kdV

− κ
4∑

f =1

∫
∂�

f
i

ni
y, f T ∗

f ϕ
i
kd S (13)

∫
�i

γ i
k qi

zdV = κ

∫
�i

T i∇zγ
i
k dV

− κ
4∑

f =1

∫
∂�

f
i

ni
z, f T ∗

f γ
i
k d S. (14)

It is necessary to mention that the solutions in the adja-
cent elements are allowed to be discontinuous in the DGTD
analysis, thus the values of solutions at the interfaces T ∗, q∗

x ,
q∗

y , and q∗
z involved in the surface integration at the right

hand sides of (11)–(14) must be carefully chosen in order
to obtain an accurate and unique solution. For hyperbolic
systems, the numerical fluxes denoted by q∗ and T ∗ are
employed to facilitate the information communication between
the neighboring elements. In this paper, we have the following
definitions [24]–[26]:

n̂i
f · q∗

f = C10

(
n̂i

f ·qi + n̂i
f ·q j

f

)
+ C11(n̂i

f ·qi −n̂i
f · q j

f )

+ C12(T
i −T j

f ) (15)

T ∗
f = C20(T

i + T j
f )+ C21(n̂i

f · qi − n̂i
f · q j )

+ C22(T
i − T j

f ) (16)

where the superscript j denotes the neighboring element, ni
f

represents the unit normal vector at face f , and the coefficients
C10 = 0.5, C11 = 0, C12 = −4, C20 = 0.5, C21 = 0, and
C22 = 0. Specifically, to consider the convection boundary
condition in (3) and (4), C10, C12, and C22 are redefined as
0, −h, and 0.5, respectively.

Next, the unknowns in element i are approximated by
the local nodal basis functions: T i = ∑nT

k=1 ψ
i
k(r)T̃

i
k (t),

qi
x = ∑ni

q
k=1 φ

i
k(r)q̃

i
x(t), qi

y = ∑ni
q

k=1 ϕ
i
k(r)q̃

i
y(t), and qz =∑ni

q
k=1 γ (r)q̃

i
z(t) with ni

T and ni
q denoting the number of basis

functions for T i and qi
x,y,z, while T̃ i

k (t), q̃ i
x(t), q̃ i

y(t), and
q̃ i

z(t) represent the time-dependent expansion coefficients that
are to be determined. By further resorting to (11)–(14) and
the definitions of numerical fluxes in (15) and (16), four

semidiscrete matrix equations can be derived. Namely

[M̄i
T ]∂T̃i

∂ t
= [S̄i

x ]q̃i
x +[S̄i

y]q̃i
y + [S̄i

z]q̃i
z + Qi

+
4∑

f =1

(
[Fii

qx
]q̃i

x + [F̄ii
qy

]q̃i
y + [F̄ii

qz
]q̃ii

z + [F̄i j
qx ]q̃ j

x

+ [Fi j
qy ]q̃ j

y + [F̄i j
qz ]q̃ j

z +[F̄ii
T ]T̃i + [Fi j

T ]T̃ j
)

(17)

[M̄i
qx

]q̃i
x = [C̄i

x ]T̃i +
4∑

f =1

([
Ḡii

x

]
T̃i + [

Gi j
x
]
T̃ j ) (18)

[M̄i
qy

]q̃i
y = [C̄i

y]T̃i +
4∑

f =1

([
Ḡii

y

]
T̃i + [

Gi j
y
]
T̃ j ) (19)

[M̄i
qz

]q̃i
z = [C̄i

z]T̃i +
4∑

f =1

([
Ḡii

z

]
T̃i + [

Gi j
z
]
T̃ j ) (20)

where the elements in above matrices are given as

[M̄i
T ]kl = ρmcρ

∫
�i

ψ i
k(r)ψ

i
l (r)dV

[M̄i
qx

]
kl

=
∫
�i

φi
k(r)φ

i
l (r)dV

[S̄i
x ]kl =

∫
�i

φi
l (r)∇ψ i

k(r)dV

[Q̄i ]k =
∫
�i

φi
k(r)QdV

[C̄i
x ]kl = κ

∫
�i

ψ i
l (r)∇xφ

i
k(r)dV

[F̄ii
qx ]kl

= C10

∫
∂�i, f

ψ i
k(r)n

i
x, f φ

i
l (r)d S

[F̄i j
qx ]kl = C10

∫
∂�i, f

ψ i
k(r)n

i
x, f φ

j
l (r)d S

[F̄ii
T ]kl = C12

∫
∂�i, f

ψ i
k(r)ψ

i
l (r)d S

[F̄i j
T ]kl = −C12

∫
∂�i, f

ψ i
k(r)ψ

j
l (r)d S

[Ḡii
x ]kl = κ(C20 + C22)

∫
∂�i, f

φi
k(r)n

i
x, fψ

i
l (r)d S

[Ḡi j
x ]kl = κ(C20 − C22)

∫
∂�i, f

φi
k(r)n

i
x, fψ

j
l (r)d S. (21)

For other elements in [S̄i
y], [S̄i

z], [C̄i
y], [C̄i

z], [F̄ii
qy], [F̄ii

qz],
[Ḡii

y ], [Ḡii
z ], [Ḡi j

y ], and [Ḡi j
z ], their definitions have similar

expressions to those in the x-direction.
In this paper, each unknown in every tetrahedron is approx-

imated by four nodal basis functions, namely, ni
T = 4 and

ni
q = 4. Therefore, the dimension of the matrix equation to be

solved is 4 by 4. As a result, the computational cost for the
matrix factorization is negligible.

To keep an explicit time marching scheme, the first-order
time-derivative in (17) is discretized by the forward Euler
method. For the explicit scheme, the Courant–Friedrichs–
Lewy condition must be satisfied to ensure stability. In this
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Fig. 1. Calculated temperature T by DGTD at r1 = 0.252x̂+0.249ŷ+0.284ẑ,
r2 = 0.255x̂ + 0.231ŷ + 0.103ẑ, r3 = 0.232x̂ + 0.255ŷ + 0.048ẑ, and r4 =
0.04x̂ + 0.255ŷ + 0.141ẑ. For comparison, the analytical results (blue curve)
obtained from (23) are given as well.

paper, the time-stepping size for the i th element is determined
in terms of the following condition:


t ≤ α · min
{

l2
min/[κ/ρcρ ]

}
(22)

with α depending on the order of basis function and the type
of spatial discretization.

III. NUMERICAL RESULTS

In this section, several representative examples are provided
to verify and validate the accuracy of the proposed algorithm.

A. Rectangular Silicon Brick

In order to validate the feasibility and accuracy of the
DGTD algorithm subjected to different boundary conditions,
a rectangular silicon brick is studied. The dimensions of the
brick in the x-, y-, and z-directions are given by Lx = 0.5 m,
L y = 0.5 m, and Lz = 0.5 m, respectively. First, the
DGTD algorithm is benchmarked with the Dirichlet boundary
condition: T (x, y, z, t)|x=0 = 0, T (x, y, z, t)|x=Lx = 0,
T(x, y, z, t)|z=0 = 0, T(x, y, z, t)|z=Lz = 0, and the initial
solution T (x, y, z, t)|t=0 = sin(πx/Lx)sin(πz/Lz). Corre-
spondingly, we have the analytical solution described as

T (x, y, z, t) = sin

(
πx

Lx

)
sin

(
πz

Lz

)

× exp

[
−κπ

2t

ρcρ

(
1

L2
x

+ 1

L2
z

)]
(23)

with κ = 160 W/[m.K], ρ = 2300 kg/m3,and cρ =
730 J/[kg.K] in this simulation.

After the DGTD analysis, the computed temperature profiles
at four different points are plotted versus the time as shown
in Fig. 1. It is noted that the numerical results are in good
consistence with the analytical references. In Fig. 2, the
3-D temperature distribution at t = 12.4 s is also given.
For comparison, the analytical reference is provided again.
Very good agreement between the numerical results and the
reference solutions is observed. To have a better clarification,
the L2 norm errors at the four observation points are calculated

Fig. 2. 3-D transient temperature (K) obtained by (a) DGTD simulation and
(b) analytical formula (23).

Fig. 3. Calculated temporal temperature at r = 0.185x̂ + 0.18ŷ + 0.256ẑ for
(a) different convective heat transfer coefficients and (b) specific heat capacity.
For comparison, the results from the TDFEM are given as well.

as 8.41 × 10−3, 9.78 × 10−3, 2.14 × 10−3, and 3.22 × 10−3.
Thus, the accuracy of DGTD for the Dirichlet boundary
condition is successfully demonstrated. In the DGTD method,
the implementation of Dirichlet boundary condition is similar
to that in the FEM, for nodes at the Dirichlet boundary, the
unknown coefficients of the corresponding nodal basis are
explicitly given. Thus, only unknowns not over the Dirichlet
boundary condition are to be solved.

In practical thermal systems, the convective boundary con-
dition must be considered since air cooling is popularly
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TABLE I

GEOMETRY INFORMATION AND EQUIVALENT THERMAL PARAMETERS

Fig. 4. (a) 3-D view of the integrated system. (b) Cross-sectional view of
the structure.

employed to cool down the integrated chips. To achieve this
purpose, the six boundary surfaces of the above brick are
imposed with the convective boundary.

We first suppose that the parameters including the ther-
mal conductivity κ , the mass density ρ, the specific heat
capacity cρ , and the ambient temperature Ta are fixed to
135 W/[m · K], 2330 kg/m3, 704 J/[kg · K], and 300 K,
respectively, while the convective heat transfer coefficient h is
set to be different values. In Fig. 3(a), the temporal temperature
at r = 0.185x̂+0.18ŷ+0.256ẑ is provided. As can be seen, the
temperature increases faster for larger convection coefficient.
For comparison, the results from the time domain FEM
(TDFEM) are given. As can be seen, obvious consistencies
are reached. The L2 norm errors corresponding to h = 100,
250, and 1000 are 1.56×10−4, 2.75×10−4, and 5.84×10−4,
respectively.

Next, the convective heat transfer coefficient h is fixed to be
100 W/[m2 · K], and the specific heat capacity cρ is varied. In
Fig. 3(b), the temperature T at the same point is shown as the
function of time. As expected, the larger specific heat capacity
causes the slower temperature rise since it needs more energy
to raise the same amount of temperature. The numerical results
agree very well with the TDFEM references, and the L2 norm

Fig. 5. DGTD calculated temperature at three observation points r1, r2,
and r3. For verification purposes, the results simulated by COMSOL are also
given.

Fig. 6. Snapshot of the temperature profile (K) at the top surface of the
interposer at t = 2 s. (a) Numerical result by the DGTD method. (b) Reference
by COMSOL.

errors corresponding to cρ = 300, 500, and 700 are 1.02 ×
10−4, 1.52 × 10−4, and 1.56 × 10−4, respectively. Thereby,
the accuracy of proposed DGTD method has been validated
for both Dirichlet and convection boundary conditions.

Here, the number of mesh elements is 4530, the CPU time
of each time marching step is around 0.0052 s, and the peak
memory cost is around 0.01 GB.

B. 3-D Integrated System With Equivalent
Thermal Parameters

In this example, a 3-D integration structure shown in Fig. 4
is investigated, where the geometrical details and material
properties are given in Table I. Instead of directly consid-
ering the physical presence of TSVs and ball grid array,
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Fig. 7. Geometrical details of the investigated 3-D package. (a) Distribution of different vias. (b) Cross-sectional view of the package. The geometrical
parameters are given as l1 = 12 mm, l2 = 12 mm, d1 = 1.25 mm, d2 = 1.25 mm, d3 = 1.95 mm, h1 = 7 mm, h2 = 0.5 mm, and h3 = 0.5 mm. The
thickness of thermal spreader is 0.2 mm as well as C4.

TABLE II

MATERIAL PROPERTIES REQUIRED BY THE THERMAL ANALYSIS

Fig. 8. Power map over (a) CPU die and (b) memory die, where QC
1 = 20Qc ,

QC
2 = 30Qc , QC

3 = 35Qc , QC
4 = 25Qc , QM

1 = 60Qm , QM
2 = 70Qm ,

QM
3 = 65Qm , and QM

4 = 63Qm with Qc = ‖cos (2πy/3l1) ‖ and Qm =
‖cos (3πy/2l1) ‖.

the thermal effects of TSVs in the interposer and ball grid
array in the microbump layer are equivalently replaced by
revising the thermal parameters of materials in the corre-
sponding layer [27]. In this way, the homogeneous meshes
can be employed to model this structure, which consequently
results in only 15 208 elements. The power consumption on
dies is a Gaussian pulse defined by Q = Q0exp[−(t −
1.2)2/0.36] W/m3 with Q0 = 3.6 × 108 on the first die and
Q0 = 2.4 × 108 on the second die. The isotherm boundary of
298.15 K is applied to the top surface of the TIM as the heat

sink, while the convection boundary with h = 5 W/[m2 · K]
is applied to the remaining surfaces of the package.

To verify the accuracy of the proposed algorithm, the
transient temperature at three observation points r1, r2, and
r3 with r1 = 0.015x̂ + 0.015ŷ + 0.007ẑ, r2 = 0.017x̂ +
0.017ŷ + 0.008125ẑ, and r3 = 0.031x̂ + 0.031ŷ + 0.008125ẑ
located at the interposer layer, the center of first and second
dies, respectively, are computed as shown in Fig. 5. For com-
parison, the solutions simulated by the commercial software
COMSOL [28] are also presented. As can be seen, the calcu-
lated numerical results agree very well with the references. For
further verification, the temperature distribution over the top
surface of the interposer at t = 2 s is calculated and plotted
in Fig. 6. As can be seen, the calculated result from DGTD
algorithm associates with the reference from the COMSOL
simulation [28].

In this example, the CPU time of each time-step is 0.019 s,
and the memory cost is around 0.06 GB.

C. 3-D Integration Package and Interconnect

To further demonstrate the capability of the proposed algo-
rithm for analyzing complicated multiscale systems, a 3-D
integrated circuit package with vertically stacked-up chips
connected by TSVs is studied, as shown in Fig. 7. This
module is composed of one CPU chip and one memory
die, 12 thermal vias, 54 TSVs in the CPU layer, 24 TSVs
in the memory layer, a thermal spreader, and a heat sink.
In Table II, the thermal equation required parameters are
listed. Unlike the second example, all the geometrical elements
here are modeled rigorously without using the equivalent
thermal parameters. It is supposed that the convection bound-
ary is applied at the surface of the heat sink with h =
50 W/[m2 · K], and other surfaces are assumed to be adiabatic
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Fig. 9. DGTD calculated temperature distributions (◦C) of the 3-D integrated circuit at (a) t = 0.0138 s, (b) t = 0.02 s, (c) t = 0.0242 s, and (d) t = 0.027 s.

Fig. 10. (a) and (b) Temperature profiles (◦C) over the bottom surface of the CPU die at t = 0.02 s and t = 0.027 s, respectively. (c) and (d) Temperature
profiles over the bottom surface of the memory die at t = 0.02 s and t = 0.027 s, respectively.

(The convective heat transfer coefficient h = 0 W/[m2 · K]).
The heat power consumptions of the CPU and memory dies
are described in Fig. 8, while a 50-W impressed heat source
is placed over the thermal spreader. Totally, 469 220 strongly
inhomogeneous tetrahedrons are generated, which results in
7 507 520 unknowns. Even though there are more than seven
million unknowns, in the DGTD analysis, the dimension of
the matrix equation for factorization is 4 by 4 since the
DGTD method in this paper solves the whole computational
domain in an element-by-element scheme. Thus, it is free of
issues encountered in the FEM such as factorization of a very
large matrix (the dimension of the global matrix is a few
millions) that could be seriously ill-conditioned due to the
very inhomogeneous mesh cells.

In Fig. 9, the 3-D temperature profiles at t = 0.0138 s,
t = 0.02 s, t = 0.0242 s, and t = 0.027 s obtained
from the proposed DGTD algorithm are provided. The
2-D temperatures at the bottom surfaces of the CPU die and
memory die at t = 0.02 s and t = 0.027 s are plotted in
Fig. 10. It is interestingly noted that the temperature of the
memory die raises slowly compared to the CPU die although
the power consumption in the memory die is higher, which
is attributed to the memory die attached with the thermal
spreader so that the generated heat can be transferred to the
heat sink.

Finally, consider that the above heat sources are mod-
ulated by a pulse G0(t) shown in Fig. 11. The transient
temperature variations at different positions over the chip
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Fig. 11. Pulse G0(t) used to modulate the heat source.

TABLE III

CORRESPONDING SPATIAL COORDINATES (mm)
FOR THE CURVES IN FIG. 12

Fig. 12. Transient temperature profiles (◦C) at different positions listed in
Table II.

die and memory die listed in Table III are plotted in
Fig. 12.

For this example, the CPU time of each time marching step
is around 0.7 s, and the peak memory cost is around 1.52 GB.

IV. CONCLUSION

A DGTD algorithm is developed in this paper for analyzing
the heat transfers in 3-D integrated circuits and packages. To
solve the parabolic heat equation by the DGTD method, an
auxiliary vector named heat flux is introduced that degenerates
the parabolic one to a hyperbolic equation. Due to the local
operation of DGTD, the whole computational domain can be
solved in an element-by-element scheme. Thus, it is free of
issues such as the factorization of a huge matrix equation that
is usually ill-conditioned due to multiscale meshes. The pro-
posed algorithm is verified both analytically and numerically,
as well as its capability to handle multiscale structures.
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