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Intuitive Formulation of Discontinuous Galerkin
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Abstract— An intuitive formulation of discontinuous Galerkin
surface integral equation (DG-SIE) method is proposed in this
paper, which is established by performing singularity extraction
and singling out the infinitely large term in the entries of the
impedance matrices associated with the SIEs, which are popular
in solving electromagnetic scattering problems. Nonoverlapping
trial and test functions defined on triangles are employed
without requirements of the surface current (normal) continuity
across their internal boundary contours. The proposed SIE-DG
formulation is very flexible and is validated by examples of
perfect electrically conducting targets in both conformal and
nonconformal meshes.

Index Terms— Discontinuous Galerkin (DG) method,
discontinuous vector basis function (DVBF), surface integral
equation (SIE).

I. INTRODUCTION

SURFACE integral equation formulations are popular in
solving electromagnetic scattering problems of perfect

electrically conducting (PEC) objects or homogeneous media.
To solve the surface integral equations (SIEs) with the con-
ventional Galerkin scheme, div-conforming basis functions,
such as Rao–Wilton–Glisson (RWG) basis functions [1], are
usually employed for the trial and test functions, and the
continuity of the normal components of the surface currents
across internal edges is enforced automatically. In analyzing
large-scale systems, domain decomposition is perhaps the
most effective technique [2]–[5]. In practical engineering, a
large system is usually divided into many subblocks, and
each subblock is modeled using a general computer-aided-
design (CAD) tool with its geometrical data stored in standard
file formats, such as SAT, SLD, and SM2. For example, an
aircraft is usually modeled using PEC surfaces, and the data
of its body, wings, and engines can be stored in different SAT
files. When performing electromagnetic analysis, we have to
import these data files and combine them to form a connected
PEC object. However, because of the limited modeling accu-
racy of CAD tools, two pieces of surface may not be perfectly
connected: their interfacing boundaries do not coincide at the
connection edges or tearing lines. There are possibly some
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misplacement at the interfacing edges, which will cause spu-
rious slits or overlaps. Adjustment of the abnormal meshes at
the connections is usually required before analyzing the object.
Obviously, it is more efficient if we can directly combine
every subdomain together and mesh each subblock separately
without the necessity to correct the displacement. However, a
troublesome issue is that in these situations, the mesh structure
would be nonconformal at the connecting boundaries. Noncon-
formal mesh structures are also well encountered when we
make local mesh refinement or analyze multiscale problems.
Unfortunately, the numerical accuracy could be degraded if
nonconformal meshes are adopted, because it is difficult to
define div-conforming vector basis functions on the mesh and
the couplings between nonconformal mesh elements are more
difficult to be evaluated accurately.

Thanks to the discontinuity of the approximation,
discontinuous Galerkin (DG) method shows great adaptabil-
ity to complex geometries through the use of unstructured
possibly nonconformal meshes. Galerkin methods for elliptic
and parabolic equations using discontinuous finite elements
were independently proposed in [6]–[8], which were then
called interior penalty (IP) methods. Meanwhile, the DG meth-
ods for hyperbolic equations have also been developed [10].
A comprehensive review of these methods can be found
in [11]–[13]. Recently, DG methods have been applied
to solving Maxwell’s equations in the framework of
finite element method (FEM) [14]–[17]. In spite of this, DG
methods have also been extended to SIEs for electromagnetic
scattering problems [18]–[23]. DG methods can be applied
to various types of elements, nonconformal meshes, and
nonuniform orders of approximations [24]. The continuities
of the currents and boundary conditions are enforced weakly
through the Galerkin testing schemes, and the choice of basis
functions becomes very flexible.

The discontinuous Galerkin surface integral equation (DG-
SIE) method, referred to as IEDG in [22], is formulated by
introducing an IP term, which was inspired by the DG in
FEM. In the method, discontinuous vector basis functions
(DVBFs) have been adopted, and have shown great flexibility
in handling large-scale electromagnetic systems. However, the
IP term is not considered in [23]. The error due to this
simplification is not severe, because a good strategy has been
utilized in [23]: nonconformal bases and DG method are used
only at the connecting boundaries, while RWG bases and the
conventional Galerkin method are used for all other normal
surfaces.
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Fig. 1. Three DVBFs on a triangle.

In this paper, we will present an intuitive formulation
of DG for SIEs, which is different from that described
in [22] and [23]. As is well known, if DVBFs are utilized, the
discontinuity of the surface currents will cause accumulation
of charges on the edges of the mesh elements. As a result, the
mutual coupling of adjacent elements tends to be infinitely
large if the two accumulated line charges coincide. In the
DG-SIEs described in [22], the unbounded line–line integral
is dropped and an IP term is introduced to penalize the poten-
tial produced by the charges accumulated along the edges.
However, in the proposed method, the core term that makes
the mutual coupling infinitely large is singled out. After that,
the coupling is, in some extent, loosened by deleting a small
integration range in the neighborhood of the singular point.
The new DG formulation can be applied to solving the surface
electric field integral equation (EFIE), the surface magnetic
field integral equation (MFIE), and the surface combined field
integral equation (CFIE). Analysis shows that the accuracy
and the conditioning of the new DG-SIEs can be controlled
by adjusting the coupling intensity, and no IP term is necessary
to be introduced. For the sake of simplicity, hereafter, we use
EFIE-DG, MFIE-DG, and CFIE-DG to, respectively, denote
the method of solving the three SIEs using DVBFs and DG
testing scheme, while EFIE-RWG, MFIE-RWG, and CFIE-
RWG for the methods of solving the three SIEs with RWG
bases and conventional Galerkin testing scheme.

The formulation for EFIE-DG is detailed in Section II,
which is extended to MFIE-DG and CFIE-DG in Section III.
Numerical examples are presented in Section IV, with the
conclusions drawn in Section V.

II. INTUITIVE FORMULATION OF DISCONTINUOUS

GALERKIN SURFACE ELECTRIC FIELD

INTEGRAL EQUATION

The nonoverlapped DVBFs employed in this paper are
defined on a triangle, as shown in Fig. 1.

There are three basis functions fn,q , q = 1, 2, 3 being
defined on the triangle Sn . Their expressions are similar to
that of a half-RWG (HRWG) basis function, which can be
written explicitly as follows:

fn,q =
⎧
⎨

⎩

ln,q

2An
(r − rn,q ), r ∈ Sn

0, elsewhere
, q = 1, 2, 3 (1)

where rn,q is the qth node on the triangle Sn and ln,q

is the length of its opposite edge en,q . An is the area of
the triangle. û is the binormal unit vector (or called the

in-plane normal unit) of edge en,q . For the sake of conve-
nience, hereafter, the node rn,q and the edge en,q are referred
to as the reference node and reference edge of the basis
function fn,q , respectively.

The divergence of the discontinuous basis function is
associated with the charge density, which can be derived as

∇s · fn,q =
⎧
⎨

⎩

ln,q

An
− δ(r − ren,q ), r ∈ Sn

0, elsewhere
(2)

where δ(r − ren,q ) is the Dirac delta function. For any given
smooth function v(r) on surface S containing edge en,q , there
exists the following integral equality:

∫

S
v(r)δ(r − ren,q )d S =

∫

en,q

v(r)dl. (3)

Obviously, the electric charge corresponding to the basis
function fn,q consists of two parts: a constant surface charge
on the triangle with density of [−( jωε)−1(ln,q/An)] and a
line charge with density of [( jωε)−1] on the edge where the
current is terminated.

Consider a PEC object with its surface ∂� being discretized
into N triangles and ∂� = S1 ∪ S2 · · · ∪ SN . Therefore, there
are totally 3N DVBFs as defined in (1). The surface electric
current can be approximated as

Js(r) =
N∑

n=1

3∑

q=1

jn,qfn,q (r). (4)

Two surface trace operators on ∂� are introduced [14]: the
tangential components trace operator πτ (·) and the twisted
tangential trace operator γτ (·), which are denoted as

πτ (u) = n̂ × (u × n̂)|∂�, γτ (u) = n̂ × u|∂�. (5)

The electric field integral equation (EFIE) can be established
on a PEC surface

πτ [Einc(r)] + πτ [L{Js}] = 0, r ∈ ∂� (6)

where L is the electric field integral operator and can be
represented as

L{Js} = − jωA{Js} − ∇φ{Js} (7)

with

A{Js} = μ

∫

∂�
g(r; r′)Js(r′)d S′ (8)

φ{Js} = − 1

jωε

∫

∂�
g(r; r′)∇′

s · Js(r′)d S′. (9)

Here, R = |r − r′|, and g(r; r′) = e− j k R/4π R is the scalar
Green’s function in free space. μ and ε are the permeability
and the permittivity in the free space, respectively.

In DG method, the trial function space ⊕N
m=1 ⊕3

p=1 fm,p is
allowed to be discontinuous across the internal triangle edges.
Testing (6) with the discontinuous basis functions yields
〈

fm,p,

N∑

n=1

3∑

q=1

jnπτ [L{fn,q }]
〉

Sm

= −〈
fm,p, πτ

[
Einc

m (r)
]〉

Sm

(10)
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in which the surface inner product is defined by

〈v, u〉Sm =
∫

Sm

(v · u)d S. (11)

The scalar potential contributed from the surface charge
density and the line charge density can be separated as follows:

φ{fn,q} = φSn{fn,q } + φCn {fn,q } (12)

where

φSn

{∇′
s · fn,q

} = − 1

jωε

∫

Sn

g(r; r′)∇′
s · fn,qd S′

φCn {ûn,q · fn,q} = 1

jωε

∫

en,q

g(r; r′)(ûn,q · fn,q )dl ′. (13)

The property of (ûn,q · fn,q ) = 0 when r′ ∈ Cn\en,q has
been used to derive (13).

The Green’s identity is often applied to reducing the order
of singularity in testing the scalar potential. Although it is
quite fundamental, we write one entry of (10) explicitly as
follows:

〈fm,p, πτ [L{fn,q }]〉Sm = 〈fm,p,− jωA{fn,q}〉
+〈∇s · fm,p, φSn

{∇′
s · fn,q

}〉Sm

+〈∇s · fm,p, φCn {ûn,q · fn,q}〉Sm

−〈ûm,p · fm,p, φSn

{∇′
s · fn,q

}〉Cm

−〈ûm,p · fm,p, φCn {ûn,q · fn,q }〉Cm .

(14)

Obviously, it can be seen that the first two terms in the
right-hand side have exactly the same integration forms as
those in the conventional Galerkin method, while the last three
terms are caused by the discontinuity of the basis functions.
If we interpret the test function fm,p as a surface current,
then the first term in the right-hand side can be viewed as
the total magnetic energy when the current is put into the
vector potential created by the electric current fn,q ; similarly,
the second and the third term can be regarded, respectively, as
the electric energy when the surface electric charge associated
with fm,p is put in the scalar potential generated by the surface
charge associated with fn,q and the line charge on edge em,p;
the fourth and the last term can be regarded, respectively, as the
electric energy when the line electric charge on the edge em,p

is put in the potential due to the surface charge associated with
fn,q and the line charge on the edge en,q . The sum of these
electromagnetic energies should be equal to the total energy
supplied by the incident field, which is 〈fm,p, πτ [Einc

m (r)]〉Sm .
It can be checked that in all situations, the first four terms
of energies are bounded. However, the last term may become
infinitely large when the two line charges coincide, which will
make the conventional Galerkin testing scheme not applicable
without modification.

In the conventional continuous Galerkin (CG) method, the
surface current continuity is forced by using RWG bases, while
in DG, discontinuous basis functions are used, so the surface
currents are not necessary to be strictly continuous across
triangle edges. However, the surface currents are made to be
approximately continuous by introducing an IP term in [22]

Fig. 2. Local coordinate system for two discontinuous basis functions sharing
a common edge.

and a �-term in the method proposed in this paper, which
is associated with the singularity of the last term in (14). It
is noticed that the dual contour line integral on both sides
of the contour can be canceled in the traditional CG method
employing RWGs in conformal meshes, so that no charges
accumulate along the contour.

Equation (14) is almost the same as [22, eqs. (22) and (23)].
Both Peng et al.’s work [22] and the method proposed
here are focused on seeking an efficient method to treat the
unbounded line–line integral in (14) via the concept of DG.
The infinite double contour integral terms are cancelled in [22],
and for compensation, an IP term is added to penalize the
accumulation of charges across the contour boundary. An IP
stabilization function is introduced to decide the strength of the
penalization. Different from Peng et al.’s work [22], we are
intended to evaluate the infinitely large term in (14) by an
approximate scheme rather than replacing this term by an IP
term according to the idea of DG.

In order to establish a feasible testing scheme using DVBFs,
the last term will be checked in more details. Consider two
basis functions fm,p and fn,q , whose reference edges are put
in the local coordinate system shown in Fig. 2. The t-axis is
for the field edge, and the t ′-axis for the source edge. The
two axes coincide and share a common origin. The reference
edge em,p spans over [l−m , l+m ], and en,q over [l−n , l+n ]. We have
assumed l−n = 0 and l+m = lc, so the common interface shared
by the two reference edges is located in the interval [0, lc]. The
last term of (14) is a double-folded line integration on the two
reference edges. Since it is not difficult to find that only the
integration over the interval [0, lc] tends to be infinitely large,
the integration can be written with the technique of singularity
extraction as follows:

1

jωε

∫ lc

0

∫ lc

0

e− j k|t−t ′|

4π |t − t ′|dt ′dt

= 1

jωε

∫ lc

0

∫ lc

0

e− j k|t−t ′| − 1

4π |t − t ′| dt ′dt

+ 1

jωε

∫ lc

0

∫ lc

0

1

4π |t − t ′|dt ′dt . (15)

The first term at the right-hand side of (15) is bounded and
can be calculated by using the Gaussian quadrature integration
formulas, while the second term is unbounded and can be
made bounded by deleting a small interval [t − �, t + �]
in the neighborhood of the singular point (1/|t − t ′|). It is
reasonable to assume that the value of � should be much
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smaller than lc; hence, the second term of the right-hand side
of (15) can be approximately integrated directly as follows:

∫ lc

0

∫ lc

0

1

4π |t − t ′|dt ′dt

≈
∫ lc−�

�

[∫ t−�

0

1

t ′ − t
dt ′ +

∫ lc

t+�

1

t − t ′
dt ′

]

dt

= 2lc(ln lc − 1) − 2lc ln �. (16)

Obviously, we have lim�→0(lc ln �) = ∞. It has to be noted
that the small interval is removed only in performing the
integration of (16), while it is not removed for other line
integrations in (14). It can be demonstrated that except this
�-term, the other parts of the integration in (14) do not contain
� and are all bounded in all situations. Since lc ln � = 0
for lc = 0, the �-term (2lc ln �) is not zero only when the
reference edges of the two DVBFs share a common interfacing
line segment with length of lc. Therefore, the matrix form
of (10) can be written in the following form:

(ZEFIE + αZ�) · I = ein (17)

where α = (ln �)/(ωε) and I = [ j1, j2, . . .]t . The entries of
the matrix ZEFIE contain all the integration value of (14) except
the term that contains (lc ln �). The entries of Z� can be
derived as

Z�(m̃, ñ) =
{ j lc

2π
, em,p, en,q share common edge lc

0, otherwise
(18)

where m̃ and ñ are the sequential numbers of the discontinuous
basis functions fm,p and fn,q , respectively.

Judging from (18), we can see that Z� is a symmetrical
matrix, and each row of Z� contains only several nonzero
elements, corresponding to the DVBFs whose reference edges
share a common interface. In order to get a more clear
understanding, let us consider applying DG to a conformal
triangular mesh structure, where two internal DVBFs that
share a common reference edge can form an RWG. In this
case, each row of Z� contains only two nonzero elements
of identical value, corresponding to the positive and negative
part of an RWG basis. Assume that only the p0th and the
q0th element are nonzero in the m̃th row of Z�, which are,
respectively, associated with the current expansion coefficient
jp0 and jq0 . The two nonzero elements can be readily derived
from (18) as

αZ�(m̃, p0) = αZ�(m̃, q0) = (ln �)( jlc0/2πωε)

where lc0 is the common interface of the two discontinuous
vector bases. (It is also the common edge of the RWG basis
formed by the two DVBFs.) We can spell out the m̃th equation
in the matrix system as follows:

∑

m̃ �=p0,ñ �=q0

Z(m̃, ñ) jn + (ln �)

(
jlc0

2πωε

)

( jp0 + jq0)

= ein(m̃). (19)

When � → 0, we have ln � → ∞. Since ein(m̃) is
bounded, (19) requires that jp0 + jq0 → 0, which means
that the expansion coefficients of any pair of two DVBFs

whose reference edges coincide must have equal amplitude but
opposite sign. Thus, the two DVBFs almost exactly behave
like a standard RWG basis function. The surface current is
forced to be normally continuous across all internal edges;
therefore, all the line integrations in (14) will vanish and the
solution will be the same as that obtained using RWG bases.
In other words, if we make � → 0, (17) will guarantee the
continuity of the normal components of the surface current
across internal edges, so the solution to (17) should approach
to that of the standard EFIE using RWG bases. However, the
condition number of the coefficient matrix in (17) is much
larger due to the property of the DVBFs, which can be verified
from the Gram matrix of the basis functions. Although the
above-mentioned conclusion is drawn from conformal meshes,
it is valid for nonconformal meshes, i.e., by setting � → 0,
we can make the normal component of the surface current
continuous across internal edges.

For 0 < �  lc, α is bounded. It can be considered as
that the mutual coupling between two coincided line charges
is loosened from infinitely large to a finite level, so the surface
current can be discontinuous across edges. If larger � is used,
the mutual coupling is made looser, and the surface currents
tend to become more discontinuous across internal edges.

As has been discussed previously, the solution to (17)
approaches to that obtained using RWG bases in conjunction
with the conventional Galerkin method. However, it is not
necessary that the accuracy of DG is always worse than that
of the conventional Galerkin method. In DG methods where
DVBFs are used, it is possible that local discontinuity may
bring higher global approximation accuracy.

Empirically, we suggest to choose 0 < � < lmin/10, where
lmin is the minimum length of edge in the mesh. Larger �
may cause larger numerical errors.

III. DG FORMULATION FOR MFIE AND CFIE

The surface magnetic field integral equation for PEC object
takes the usual form of

γτ [K{Js}] = −γτ [Hinc(r, t j )], r ∈ ∂�. (20)

In this paper, the combined field integral equation is obtained
by combining the EFIE and the MFIE in the following form:

πτ [L{Js}] + ηγτ [K{Js}]
= −πτ [Einc(r)] − ηγτ [Hinc(r, t j )], r ∈ ∂� (21)

where

K{Js} = 1

μ
∇ × A{Js} =

∫

∂�
∇g(r; r′) × Js(r′)d S′. (22)

Using the DVBFs as expansion and testing functions,
(20) and (21) can be discretized to their matrix forms just
like handling the EFIE. The resultant matrix equations are

ZMFIE · I = hin (23)

(ZCFIE + αZ�) · I = ein + ηhin (24)

where α and Z� are the same as defined previously. The
formulation can be justified by checking that all the double-
folded integrations associated with the operator K{Js} are
bounded.
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Close examination shows that the term associated with αZ�

is practically very similar to the contour internal penalty term
introduced in [22] (refer to [22, eq. (36)]), which was inspired
by the IP-DG methods. Obviously, the constant α corresponds
to the internal penalty stabilization function β defined in [22].
Note that we have used ûm instead of t̂mn in [22] to denote the
in-plane normal unit. However, in this paper, the term αZ� is
derived directly by singling out the singular term in the integral
accounting for the mutual coupling of the two overlapped line
charges caused by the discontinuity of the surface currents.
The constant α is clearly in proportional to ln �, and is perhaps
more intuitive than the concept of internal penalty.

IV. NUMERICAL EXAMPLES

In this section, PEC scatterers in the 3-D free space are
used to verify the method of EFIE-DG and CFIE-DG. It is
noted that HRWGs (DVBFs) are used in the three SIE-DG
methods while RWGs are adopted in SIE-RWG methods in
the following descriptions. Assume that an incident plane wave
with an amplitude of 1 V/m illuminates on the scatterers along
the z-axis. In order to compare the numerical accuracy, we
define a relative root mean square (rms) error for X with
respect to Y as follows:

Err = 20 log(‖X-Y‖/‖Y‖) (25)

where ‖·‖ means the rms. X and Y can be the surface currents
or the radar cross sections (RCSs).

Example A (PEC Sphere With Conformal Mesh): The PEC
sphere considered here has a radius of 1 m. Its surface
is discretized into a conformal triangular mesh with 2304
triangles, and 3456 RWGs will be generated. The ratio of
the maximum edge length versus the minimum edge length is
2.78. The frequency of the incident plane wave is 100 MHz.

Every RWG basis is separated into two parts to get two
DVBFs. The sign of the negative HRWG is changed, so that
the reference direction in every discontinuous vector basis
points away from its reference node, as defined in Fig. 1.
Consequently, totally 6912 DVBFs are obtained.

To reveal the effect of �, we decrease � from lmin to
about (10−8lmin), or equivalently to increase (− ln �) from
4 to 20. The relative errors of the surface current expansion
coefficients obtained using EFIE-DG and EFIE-RWG are
compared in Fig. 3, where the term Jerr is used and defined
according to (25). It can be seen that, with the decreasing
of �, the results obtained by using EFIE-DG approach more
and more close to those obtained using EFIE-RWG, which has
verified the observation described previously. The relative error
for the current coefficients obtained with CFIE-DG versus that
obtained using EFIE-RWG is also shown in Fig. 3, which
shows that the CFIE-DG formulation is feasible. Although not
shown in Fig. 3, the relative error associated with MFIE-DG
is calculated to be about −44 dB. It does not vary with ln �,
as can be seen from (23). Meanwhile, we have checked that if
we simply discard the singular double-folded line integration,
as proposed in [23], the relative error is about −28 dB.

The condition numbers of the EFIE-SIEs are shown
in Fig. 4. Except at small �, the condition number associated

Fig. 3. Variation of the relative errors of the surface current versus �. RWG
bases are used in EFIE-RWG, and DVBFs are used in EFIE-DG.

Fig. 4. Variation of the condition numbers versus �.

with the EFIE-DG is usually larger than that associated with
the corresponding EFIE-RWG.

The double-folded integrations in (14) are performed using
Gaussian quadrature formulas. When the field point is very
close to the source point, singularity extraction techniques
should be applied. For surface integrations, a well-adopted
strategy is to evaluate the inner-fold integration using singular-
ity extraction [25]–[27] and evaluate the outer-fold integration
using Gaussian quadrature formulas directly. However, this
strategy has to be modified for the line integrations, because
the inner-fold line integration value is infinitely large when
the field and source point coincide, for example, two edges
share a common interface or connect at one end. The former
case has been addressed in Section II, where the double-folded
line integration tends to be infinitely large and should be
evaluted with (15) and (16). As for the later case, although the
double-folded line integration is bounded, the accuracy is not
good if we use the Gaussian quadrature to evaluate the inner
integration directly, because the inner-fold line integration is
infinitely large at the connecting point. An effective method
is to separate the singular part of the inner integrant at the
connecting piont and analytically evaluate its double-folded
line integration instead of analytically performing the inner-
fold integration alone. Based on the same reason, it is more
efficient to change the integration order of the third term
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Fig. 5. RCSθθ of the PEC cone sphere. EFIE-DG: DVBF and DG method.
EFIE-RWG: RWG bases and conventional Galerkin method.

Fig. 6. Comparison of the surface current at the center points of all triangles
on the mesh of the cone sphere, calculated with EFIE-DG and EFIE-RWG.

in (14), that is, perform the surface integration with respect
to the field coordinates at first. It is noted in numerical
experiments that the accuracy of the coefficient matrix has
more effect on the solutions to EFIE-DG than to EFIE-RWG.

Example B (A PEC Cone–Sphere): The radius of the PEC
hemisphere is 0.25 m, and the height of the cone is 1 m. The
cone–sphere is originally meshed with a conformal triangular
mesh structure with 250 triangles and 375 RWG bases and
the scattering problem is solved with EFIE-RWG. Then, it
is solved once again using EFIE-DG on a nonconformal
triangular mesh, in which only the mesh structure on the cone
surface is refined: dividing one triangle into four subtriangles
by connecting the three middle points of the three edges. The
cone surface has 672 triangles and the hemisphere has 82 tri-
angles. Totally 2262 DVBFs are generated. The frequency of
the incident plane wave is 1 MHz.

The two calculated results of RCS with � = lmin/10 are
shown in Fig. 5. They agree well with maximum discrepancy
less than 0.5 dB.

To reveal the effect of �, we decrease � from lmin/2 to
about lmin/107, or equivalently to increase (− ln �) approxi-
mately from 4 to 20. The surface currents at the center point
of all triangles are sampled, and the relative error is shown
in Fig. 6. It can be seen that the surface current obtained by
using EFIE-DG approaches more close to that obtained using
EFIE-RWG with larger (− ln �).

Fig. 7. PEC sphere with nonconformal meshes. (a) Normal nonconformal
mesh. (b) Abnormal nonconformal mesh with a spurious slit. (c) Abnormal
nonconformal mesh with a spurious overlap.

Fig. 8. Relative errors of the RCSs versus theoretical result. The SIE-DGs
are solved on the normal nonconformal mesh shown in Fig. 7(a).

Example C (PEC Sphere With Nonconformal Meshes): In
this example, the PEC sphere is created by combining two
hemispherical surfaces with different meshes (340 triangles in
the upper part and 59 triangles in the lower part), as shown
in Fig. 7(a)–(c). In Fig. 7(a), the two surfaces are connected
normally with their boundary contours exactly coincide, while
in Fig. 7(b) and (c), the two surfaces are not perfectly
connected, and there may exist some misplacements at the
interfacing contour, namely, a spurious narrow slit in Fig. 7(b),
and a small overlap in Fig. 7(c). Note that these displacements
may be caused by importing mesh data of different parts from
files generated by CAD tools. Usually these abnormal meshes
have to be readjusted to get a qualified mesh structure that
should make a sealed PEC sphere surface. In this example,
the slit and overlap are deliberately created by shifting one
node at the connecting boundary 0.04 m away from the edge
it located originally. We use this example to show that the
readjustment may be not necessary using SIE-DGs.

The RCS of the PEC sphere is obtained by solving the
three SIE-DGs where HRWG basis functions are used, and the
results associated with EFIE-DG and CFIE-DG are compared
with the theoretical one obtained using Mie series expansion
method, as shown in Fig. 8. It can be seen that with sufficiently
small �, the SIE-DGs can provide satisfactorily accurate
solutions.

When there is a spurious slit or an overlap in the noncon-
formal mesh, the SIE-DGs can be applied directly without any
modifications. The frequency of the incident wave is 1 MHz.
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Fig. 9. Relative errors of the surface currents.

Fig. 10. RCS of a PEC sphere without slit at 1 MHz.

The surface currents obtained using the two abnormal mesh
structures are sampled at the center of all triangles. They are
compared with that of the normal mesh structure, as shown
in Fig. 9. It can be seen that for sufficiently small �, the
resultant surface currents agree well, which means that the
effect of the misplacement tends to be very small if the DG
method is employed.

For comparison, we have calculated the RCS of the PEC
sphere with a real slit whose geometrical parameters are the
same as the spurious one. The results are shown in Fig. 10.
They are obtained with EFIE-RWG, as MFIE-RWG and
CFIE-RWG are not applicable for this open structure. Fig. 10
shows that the small real slit indeed has significant effect on
the scattering property of the PEC sphere.

Example D (Helicopter Model With Conformal Meshes):
A PEC helicopter model, as shown in Fig. 11, is analyzed
using the proposed EFIE-DG method. It is meshed with a
conformal triangular mesh consisting of 4696 triangles. The
ratio of the maximum edge length versus the minimum edge
length is 139.5, much larger than that in Example A. The
frequency of the incident plane wave is 100 MHz.

The relative error between the surface current coefficients
obtained using the two methods is shown in Fig. 11, where
� varies from about lmin to lmin/107, or correspondingly,
(− ln �) varies from 4 to 20.

Fig. 11. Relative error of the surface current coefficients.

The relative error is about 3 dB if the double line integration
is discarded as suggested in [23], which is quite larger than
the proposed method here. It is possible to get higher accuracy
if RWGs are used for most meshes of the surface, and DVBFs
are used for the connecting interfaces. The accuracy also tends
to become better for more uniform mesh structures, which is
true at least in all numerical experiments we have performed.

V. CONCLUSION

An intuitive formulation of DG is proposed for EFIE, MFIE,
and CFIE, which is obtained by simply discarding a small
integration interval around the singular point in evaluating the
coupling coefficients between two coincided line sources. It is
verified that SIE-DGs are feasible for nonconformal meshes
with possible misplacements at the connections. Numerical
examples demonstrate that SIE-DGs can provide numerical
results almost as accurate as SIE-RWGs. However, the con-
dition numbers associated with SIE-DGs are usually larger
than those associated with SIE-RWGs. Besides this, it seems
that the low-frequency breakdown problem affects EFIE-DG
more significantly than EFIE-RWG. These issues need further
investigating.
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