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Abstract— In this paper, a novel semianalytical gradient model
(SAGM) for characterizing conductors with surface roughness
is presented. Based on the linear function of conductivity,
the governing equation of the magnetic field is reduced to the
modified Bessel equation, which has an analytical solution. With
the piecewise linear approximation technique, the SAGM is
derived to deal with arbitrary functions of conductivity. Three
typical distributions, including the uniform, normal, and Rayleigh
distributions, are investigated. The proposed SAGM is employed
to evaluate the propagation properties of typical transmission
line structures with different surface roughness profiles. The
simulation results agree well with those from measurements,
which confirm the validity and accuracy of the proposed method.

Index Terms— Attenuation constant, conductor surface rough-
ness, effective conductivity, semianalytical gradient model
(SAGM), transmission line.

I. INTRODUCTION

W ITH the rapid increase in operating frequencies
and continuous decrease in geometric dimensions of

microwave circuits, the propagation performance of transmis-
sion lines is becoming more and more important [1]. With the
assumption of smooth conductors, the variation of distributed
resistance of transmission line is inversely proportional to
the square root of the frequency due to the well-known skin
effect. In reality, however, the copper surfaces are intention-
ally roughened to promote adhesion to the dielectric when
manufacturing printed circuit boards (PCBs). The resulting
copper surfaces hold a “saw tooth”-like structure. When the
tooth height is comparable to the skin depth, the smooth
copper assumptions break down [2]. The main reason is that
the existence of surface roughness on a conductor disturbs
current flow and induces the additional components of ohmic
loss. Thus, at high frequencies, the surface roughness will
increase the loss of transmission line significantly. Therefore, it
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is essential to characterize the conductor surface roughness and
account for its impact for accurate modeling of transmission
structures [3].

In the last decades, the effects of surface roughness on the
electrical performance of transmission structures have been
investigated in many research works. Some empirical and
analytical formulas for modeling conductor surface roughness
have been proposed [4]–[9]. For instance, the widely known
Hammerstad model, which is based on the assumption of peri-
odic “tooth structure,” has been developed in [5]. A correction
factor is utilized to account for additional loss due to rough-
ness. However, the major limitation of the Hammerstad model
is that it is only suitable for low frequencies or low values
of root-mean-square (rms) roughness, because the correction
factors saturate at a maximum value of 2, which leads to the
lack of accuracy at high frequencies.

The hemispherical model [6] is an improvement over the
Hammerstad model. As an approximation of “tooth structure,”
a hemispherical boss sitting on a plane is chosen to represent
the individual surface protrusions. However, when the fre-
quency increases over 30 GHz, the underestimation of loss
becomes apparent. The Huray model [7], [8] is developed
from the hemispherical model, where the surface roughness
is modeled as a pyramidal stack-up of spherical conductor
particles snowballs on a conductor surface. The total loss
of the structure is calculated based on the superposition of
the sphere losses. Besides the traditional planar transmission
lines, such as microstrip and stripline, the surface roughness
modeling for substrate-integrated waveguide (SIW) has also
been investigated [9]. The modified Huray model and rigorous
waveguide model are proposed to take into account the mode-
dependent loss. Nevertheless, it is difficult to obtain the snow-
ball dimensions and the number of spheres in each protrusion.

Recently, based on the extraction of roughness parameters
and electromagnetic field theory, a gradient model for treating
surface roughness is proposed [10], [11]. The standard devia-
tion of the surface profile is utilized as a single parameter in
the modeling. This model is capable to predict the roughness
impact on loss and phase delay in typical transmission lines at
high frequencies, even up to 100 GHz. Nevertheless, unlike the
traditional empirical models, it involves complicated numerical
computation with the finite-difference method (FDM) [12]
in the modeling process, which is not convenient in the
engineering applications. In order to overcome this problem,
an analytical gradient model (AGM) [13] is presented to
characterize the conductor surface roughness in our previous
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Fig. 1. (a) Microscope image of a rough conductor (including enlarged
photograph for details) with (b) normal distribution on the oxide side and
(c) Rayleigh distribution on the foil side. The PDFs and corresponding
position-dependent conductivities are also illustrated.

work. The AGM is derived based on the uniform distribution
function for the random rough surface. This analytical model
is then implemented to investigate the impact of surface
roughness on both the electrical and thermal performances of
microstrip lines.

In this paper, a novel semi-AGM (SAGM) is proposed to
characterize conductors with surface roughness. Three typical
distributions, including the uniform, normal, and Rayleigh
distributions, are introduced to describe the surface roughness
of copper foils. Using the piecewise linear approximation
scheme, the SAGM is developed to handle rough conductors
with arbitrary position-dependent functions of conductivities.
In applications, the proposed SAGM is utilized to achieve
attenuation constants of striplines with different surface rough-
ness profiles. The simulation results are consistent with the
measurements. In addition, the propagation properties of SIWs
are also evaluated with the SAGM.

II. SAGM

In this section, a systematic approach based on the SAGM is
developed to achieve the effective conductivity of conductors
with surface roughness.

With the probability theory and statistics, the surface rough-
ness of copper conductor can be characterized by certain
distribution functions. For instance, a copper foil conductor

Fig. 2. Normalized linear function of conductivity in the transition region.

has two parallel surfaces, which are named as “foil side”
and “oxide side,” respectively, as shown in Fig. 1(a) [14].
By extracting the conductor roughness profile, it is obtained
that the surface roughness on the foil side satisfies the normal
distribution, while that on the oxide side belongs to the
Rayleigh distribution, as depicted in Fig. 1(b) and (c) [14]
respectively. Thus, the probability density functions (PDFs)
of finding a point at a distance x from the mean surface
can be described by the normal and Rayleigh distributions,
respectively. According to the statistical representation, the
corresponding cumulative distribution functions (CDFs) are
provided in Appendix I.

Since the conductivity σ(x) of a conductor with surface
roughness is proportional to CDF(x), when the CDF parameter
is determined, the position-dependent conductivity is readily
obtained by [10]

σ(x) = σdcCDF(x) (1)

where σdc is the dc conductivity. For illustration, the character-
istics of σ(x) for both the normal and Rayleigh distributions
are also described in Fig. 1.

Then, in order to achieve the governing equation for pre-
dicting the loss for a rough conductor, it is assumed that
only a normal component of the electric field (E⊥) and a
tangential component of the magnetic field (B||) exist outside
the conductor. Thus, the original 3-D problem can be reduced
to a 1-D one. The resulting governing equation of the magnetic
field is given by [10]

∂2

∂x2 B|| − jωμσ(x)B|| − ∂

∂x
ln σ(x)

∂

∂x
B|| = 0. (2)

Note that the third term on the left-hand side of (2) origi-
nates from the position-dependent conductivity σ(x). If the
conductivity is constant, (2) is simplified to the classical
Helmholtz equation for describing the high-frequency effects
of conductors with smooth surfaces.

A. Analytical Solution for Linear Conductivity

First, the position-dependent conductivity perpendicular to
the conductor surface is expressed by a linear function in the
transition region between dielectric and conductor (see Fig. 2),
as

σ(x) = σdck(x + q) hmin ≤ x ≤ hmax (3)

where k and q are the two constants, hmax and hmin are
the up and down boundaries of the transition, respectively.
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The normalized form of (3) is illustrated in Fig. 2, where the
value in dielectric region is 0, and that in conductor region
is 1.

Therefore, the specific solution of (2) is related to different
regions. First, in the region of hmin < x < hmax, (2) can be
expressed as

(x + q)2 ∂2

∂x2 B|| − (x + q)
∂

∂x
B|| − jωμσdck(x + q)3B|| = 0.

(4)

With the elementary transformations of the dependent and
independent variables [15], (4) can be simplified as a classical
Bessel’s equation

x2 d2 y

dx2 + x
∂y

∂x
+ (x2 − p2)y = 0. (5)

The detailed derivation is described in Appendix II.
Then, the analytical solution of (4) is given by

B||(x) = A(x + q)I2/3(�) + B(x + q)K2/3(�) (6)

where A and B are the two constant coefficients to be deter-
mined, I2/3(�) and K2/3(�) are the two-third-order modified
Bessel functions of the first and second kinds, respectively,
and � is calculated by

� = j
1
2

2
√

ωμσdck

3
(x + q)3/2. (7)

Accordingly, the derivative of the magnetic field is obtained
by

d

dx
B||(x) = A

(
2I2/3(�) + 2

3
�I5/3(�)

)

+ B

(
2K2/3(�) − 2

3
�K5/3(�)

)
. (8)

Second, due to the fact that the third term in (2) comes
from the position-dependent conductivity, it will disappear in
the region of x > hmax, and (2) becomes the well-known
Helmholtz equation describing the classical skin effect in
ideally smooth surfaces

∂2

∂x2 B|| − jωμσB|| = 0. (9)

The analytical solution is written as

B||(x) = C × exp
[
−(1 + j)

x

δ

]
(10)

where C is another unknown constant, and δ is the skin depth

δ =
√

2

ωμσ
. (11)

Similarly, the derivative of the magnetic field is

d

dx
B||(x) = − (1 + j)C

δ
exp

[
−(1 + j)

x

δ

]
. (12)

At the interface of x = hmax, the magnetic field and its
derivation should be continuous. Thus, we have

B||(hmax)
− = B||(hmax)

+ (13)

dB||(hmax)
−

dx
= dB||(hmax)

+

dx
. (14)

Fig. 3. Normalized magnitude of the magnetic field for linear conductivity
case.

Fig. 4. Normalized piecewise linear function of conductivity in the transition
region.

According to the above relations and assuming that B|| is nor-
malized to unity at x = hmin, the values of constants A, B ,
and C in (6) and (10) can be determined.

To validate the above-mentioned model, the magnetic field
parallel to a rough copper surface is investigated. Without
loss of generality, the rms of conductor surface roughness is
set to 1 μm. The normalized amplitudes of magnetic fields
are calculated by the proposed method, and compared with
those from FDM in [10]. As observed in Fig. 3, the results
of two approaches are in very good agreement for different
operating frequencies. Since the proposed method is based
on the analytical formulas, it holds inherent advantages in
computational efficiency and provides accurate results as well.

B. Semianalytical Solution for Arbitrary Conductivity

In real applications, however, the expressions of position-
dependent conductivities may be much more complicated
than a linear function. Therefore, it is difficult to derive an
analytical solution of (2) directly. To conquer this problem, the
piecewise linear approximation is utilized for the derivation of
SAGM.

For instance, the curve of Gaussian-CDF can be approx-
imated by a group of piecewise linear sections, as shown
in Fig. 4. The resulting conductivity is expressed as

σ(x) = σdc ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < x0
k1(x + q1), x0 ≤ x < x1
. . .
kN (x + qN ), xN−1 ≤ x < xN

1, xN ≤ x .

(15)
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Fig. 5. Normalized magnitude of the magnetic field for arbitrary conductivity
case.

Fig. 6. SEM photograph of signal traces for (a) STD, (b) VLP, and (c) HVLP.

Similar to the procedure in Section II-A, for a section of
xn−1 ≤ x < xn (n = 1, 2, . . . , N − 1), the analytical solution
of the magnetic field is

B||(x)|n = An(x +qn)I2/3(�n) + Bn(x +qn)K2/3(�n) (16)

where An and Bn are the constant coefficients to be deter-
mined, and �n is calculated by

�n = j
1
2

2
√

ωμσdckn

3
(x + qn)

3/2. (17)

Based on the continuity requirements [similar to (13) and
(14)] for the magnetic field and its derivative at each interface,
we will finally obtain a matrix equation as

Ax = b (18)

where

x = [B1 A1 . . . . . . BN AN C]T

b = [1 0 . . . . . . 0 0 0]T

and A is a (2N + 1) × (2N + 1) matrix described in (19),
shown at the bottom of the next page.

At the first interface, the element in A is

a11 = (x + q1)K2/3(�1)|x=x0 .

For the nth interface in the middle region, the corresponding
elements are given by

a(2n)(2n−1) = (x + qn)K2/3(�n)|x=xn

a(2n)(2n) = (x + qn)I2/3(�n)|x=xn

a(2n)(2n+1) = −(x + qn+1)K2/3(�n+1)|x=xn

a(2n)(2n+2) = −(x + qn+1)I2/3(�n+1)|x=xn

a(2n+1)(2n−1) =
[

2K2/3(�n) − 2

3
�n K5/3(�n)

]∣∣∣∣
x=xn

Fig. 7. Height histograms and PDFs of the foil sides for (a) STD and
(b) VLP.

Fig. 8. Height histograms and PDFs for HVLP of (a) oxide side and (b) foil
side.

a(2n+1)(2n) =
[

2I2/3(�n) + 2

3
�n I5/3(�n)

]∣∣∣∣
x=xn

a(2n+1)(2n+1) =
[
−2K2/3(�n+1)+ 2

3
�n+1 K5/3(�n+1)

]∣∣∣∣
x=xn

a(2n+1)(2n+2) =
[
−2I2/3(�n+1) − 2

3
�n+1 I5/3(�n+1)

]∣∣∣∣
x=xn

.

At the last interface, the elements are determined by

a(2N)(2N+1) = − exp
[
−(1 + j)

x

δ

]∣∣∣
x=xN

a(2N+1)(2N+1) = (1 + j)

δ
exp

[
−(1 + j)

x

δ

]∣∣∣∣
x=xN

.

Note that since the Gaussian-CDF varies drastically at
the two ends, the uniform partitioning strategy may induce
ill-conditioned matrix A. Thus, appropriate partitioning of
regions is important to ensure the accuracy and stability of
SAGM. Based on an adaptive scheme, this issue can be solved
successfully. In addition, the skin depth varies with operating
frequency. Denser partitioning in the region of skin depth
is required to guarantee accurate approximation in higher
frequency cases.

Similar to the analytical case in Section II-A, the accuracy
of the proposed SAGM is also verified by the FDM in [10].
The normalized magnitudes of magnetic fields for different
operating frequencies are depicted in Fig. 5. It is obvious that
the results of SAGM and FDM agree well with each other.

C. Effective Frequency-Dependent Conductivity

With the y-directional component of B||, the roughness
impact on loss can be expressed by an effective frequency-
dependent conductivity [10]

σeff(ω) = ω

8μ3
0

|By(0)|4
[∫

σ>0

|Jrough(x)|2
2σ(x)

dx

]−2

(20)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2024 at 07:03:57 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: SAGM FOR CHARACTERIZATION OF CONDUCTORS WITH SURFACE ROUGHNESS 5395

Fig. 9. Effective conductivities for different traces. Those obtained from the
original height histograms are represented as “reference.”

where the surface current density is

Jrough(x) = 1

μ

d By (x)

dx
. (21)

For real structures of copper foils, the foil side and oxide
side (see Fig. 1) usually hold different roughness parameters.
This factor should be taken into account in the derivation
of effective conductivity as well. By setting the loss power
density of a rough surface equal with that of an ideal smooth
surface, we have

∫
σ>0

|Jsmooth|2
2σeff

dx =
N∑

i=1

Li

L

∫
σ>0

|Jrough(x)|2
2σi (x)

dx (22)

where σi (x) is the position-dependent conductivity of the i th
surface, Li is the profile length of the i th surface, L is the sum
of Li (i = 1, . . . , N), and N is the total number of surfaces.

III. APPLICATION

To demonstrate the validity and accuracy of the pro-
posed SAGM, it is applied to characterize conductor surface
roughness and predict propagating properties of two typical
microwave transmission line structures in this section.

A. Stripline

In the first example, the traces of stripines with three
different foil profiles are investigated. The profiles can be
obtained by scanning electron microscope (SEM). As shown
in Fig. 6 [16], they are standard (STD), very-low-profile
(VLP), and hyper-VLP (HVLP) foils, respectively. The geo-
metrical dimensions and roughness data of them are listed in
[16].

By extracting the roughness profiles with SEM [17], we can
obtain the height histogram of each trace. As shown in Fig. 7,

Fig. 10. Simulated and measured attenuation constants for different kinds
of traces due to (a) conductor loss and (b) total loss.

the foil sides of STD and VLP satisfy the Rayleigh distri-
bution, while the oxide sides of them are relatively smooth
to be characterized by the normal distribution. By contrast,
both sides of HVLP satisfy the normal distribution, as depicted
in Fig. 8.

The validity for both normal and Rayleigh distributions
can be verified by the effective conductivities derived using
SAGM. The simulation results are compared in Fig. 9, where
those obtained from the original height histograms are indi-
cated as “reference.” A good consistency is observed for the
STD and VLP cases. The reason for the deviation in the HVLP
case is that the roughness height is small, and thus the effective
conductivity is sensitive to its profile.

Then, the effective conductivities are utilized for the predic-
tion of attenuation property of striplines with different surface
roughness distributions. The attenuation constants of striplines
are simulated by the full-wave solver ANSYS HFSS. From
Fig. 10, it is seen that the simulated attenuation due to the
conductor loss agrees well with the measured one for all three
structures. Furthermore, combined with the impact of Dk and
Df in dielectric layers [16], the total attenuation constants of

(19)
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Fig. 11. Schematic of a typical SIW structure with a = 6.21 mm,
h = 0.508 mm, d = 0.4 mm, and s = 0.8 mm.

Fig. 12. Effective conductivities for different distribution functions with
(a) Rq of 0.25 μm and (b) Rq of 1 μm.

Fig. 13. Effective conductivities with the variation of Rq at 25 GHz.

these striplines are simulated and compared with the measured
ones. Again, the excellent agreement is observed.

B. SIW Structure

In the second example, an SIW structure is studied,
as shown in Fig. 11. The SIW is designed on Rogers5880 sub-
strate with εr = 2.2 and tan δ = 0.0009. The geometrical
parameters of the structure are listed by a = 6.21 mm,
h = 0.508 mm, d = 0.4 mm, and s = 0.8 mm [18].
According to the waveguide theory, the SIW operates at the
middle frequency of 25 GHz for the dominant mode zone.

First, the effective conductivities for three typical distribu-
tions (uniform, normal, and Rayleigh) of surface roughness are

Fig. 14. Attenuation constants for different distribution functions with
(a) Rq of 0.25 μm and (b) Rq of 1 μm.

Fig. 15. Attenuation constants with the variation of Rq at 25 GHz.

investigated based on a different Rq (rms value). As shown in
Fig. 12, the effective conductivity of the Raleigh distribution
is the smallest, while that of uniform distribution is the
largest. With the increase of rms roughness from 0.25 to
1 μm, the effective conductivity decreases apparently. It is also
observed that the difference between the results of normal and
Rayleigh distributions becomes smaller, especially in the high-
frequency range. Furthermore, the impact of Rq on effective
conductivity at the operating frequency (25 GHz) of SIW
is depicted in Fig. 13. We obtain that when Rq is small,
the effective conductivities for three distributions are very
similar. If Rq is a large value, the results of normal and
Rayleigh distributions are close to each other.

Based on the above-mentioned results of effective conduc-
tivities, the corresponding attenuation constants of SIWs are
compared in Fig. 14. The attenuation constant of the Raleigh
distribution is the largest, while that of the uniform distribution
is the smallest. From Figs. 14 and 15, we also obtain that the
transmission property of SIW will be deteriorated seriously by
the rms roughness Rq . Thus, the accurate characterization of
surface roughness is essential.
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Fig. 16. Relationship between roughness profile, PDF, and CDF for uniform
distribution.

IV. CONCLUSION

In this paper, the SAGM for treating conductor surface
roughness with arbitrary distribution functions is presented.
Based on the SAGM, a systematic approach is developed to
achieve the effective conductivity and evaluate the propagation
properties of transmission lines with rough surfaces. The
uniform, normal, and Rayleigh distributions are provided as
demonstrations. The validity and accuracy of the proposed
method are illustrated by evaluating the attenuation constants
of typical microwave transmission line structures with different
surface roughness profiles. The simulation results agree well
with those from measurements.

APPENDIX I

In this appendix, three typical distributions, including the
uniform, normal, and Rayleigh distributions, are introduced to
characterize the surface roughness of copper conductors.

A. Uniform Distribution

The continuous uniform distribution is a family of symmet-
ric probability distributions. The PDF of finding a point of
height x can be described by

PDF(x) =
⎧⎨
⎩

1

hmax − hmin
, x ∈ [hmin, hmax]

0, otherwise
(23)

where hmin and hmax are the two boundaries.
With the condition of zero mean, the rms roughness is

calculated by

Rq =
√∫ hmax

hmin

x2PDF(x)dx = 1√
3

√
h2

max+hmaxhmin+h2
min.

(24)

Due to the symmetric probability distribution, we have
hmax = −hmin, and the rms roughness is

Rq = hmax/
√

3 = −hmin/
√

3. (25)

The integral function of the PDF is named as CDF, which
is given by

CDF(x)=
∫ x

−∞
PDF(u)du =

⎧⎪⎨
⎪⎩

0, x < hmin
x − hmin

hmax − hmin
, hmin ≤ x ≤hmax

1, x > hmax.

(26)

For clarify, the relationship between roughness profile, PDF,
and CDF is shown in Fig. 16.

Fig. 17. Relationship between roughness profile, PDF, and CDF for normal
distribution.

Fig. 18. Relationship between roughness profile, PDF, and CDF for Rayleigh
distribution.

B. Normal Distribution

The normal distribution is widely used for describing the
surface roughness on the oxide side of copper foils in PCBs,
as demonstrated in Fig. 1. The corresponding PDF and CDF
parameters are given by

PDF(x) = 1

Rq
√

2π
exp

(
− x2

2R2
q

)
(27)

CDF(x) =
∫ x

−∞
PDF(u)du = 1

2

[
1 + erf

(
x√
2Rq

)]
(28)

where erf(·) represents the Gauss error function, and Rq is the
rms roughness.

The relationship between the roughness profile, PDF, and
CDF is depicted in Fig. 17.

C. Rayleigh Distribution

The Rayleigh distribution is another important form to
characterize the surface roughness on copper foils, especially
for the foil side, as shown in Fig. 1. The PDF and CDF
parameters for the Rayleigh distribution are expressed as

PDF(h) = − (4 − π)	

2R2
q

exp

[
− (4 − π)	2

4R2
q

]
(29)

CDF(h) =
∫ h

−∞
PDF(u)du = exp

[
− (4 − π)	2

4R2
q

]
(30)

where

	 = h −
√

π

4 − π
Rq (31)

and

h ≤
√

π

4 − π
Rq . (32)

Similarly, their characteristics are described in Fig. 18.
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APPENDIX II

As a governing equation of the magnetic field, (4) is
rewritten here as follows:

(x + q)2 ∂2

∂x2 B|| − (x + q)
∂

∂x
B|| − jωμσdck(x + q)3B|| = 0.

(33)

It can be transformed into a general form as

x̄2 d2 f

d x̄2 + (1 − 2a)x̄
∂ f

∂ x̄
− [ jb2c2x̄2c − (a2 − c2 p2)] f = 0

(p ≥ 0, b > 0) (34)

by setting the following transformation relations:⎧⎪⎪⎨
⎪⎪⎩

x̄ = x + q
a = 1, c = 3/2
b2c2 = ωμσdck
a2 − c2 p2 = 0

(35)

Then, replacing f by x̄ az, (34) can be written as

x2 d2z

dx2 + x
dz

dx
− ( jb2c2x2c + c2 p2)z = 0. (36)

Furthermore, using t = xc, we have

t2 d2z

dt2 + t
dz

dt
− ( jb2t2 + p2)z = 0. (37)

After that with r = j1/2bt , the modified Bessel equation
can be obtained as

r2 d2z

dr2 + r
dz

dr
− (r2 + p2)z = 0. (38)

The analytical solution of (38) is given by [15]

f = xa[AIp
(

j
1
2 bxc) + B K p

(
j

1
2 bxc)] (39)

where A and B are the two coefficients, Ip(·) and K p(·) are
the first and second kind Bessel functions, respectively.
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