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Abstract—An efficient algorithm based on the contour inte-
gral method (CIM) is presented in this letter for the modeling of
lossy multiconductor transmission lines. Different from the volume
integral equation, the CIM only discretizes the contour of the cross
section of each conductor, which significantly reduces the num-
ber of unknowns in the resultant system equations. The solution
of the CIM is accelerated by the hierarchical-matrix (H-matrix)
algorithm for the extraction of the per-unit-length resistance and
inductance parameters of massively coupled transmission lines.
The procedures for the H-matrix-based solution are optimized to
keep its optimal computational complexity. The numerical results
from the proposed method agree well with those from the com-
mercial software. The complexities of CPU time and memory cost
for the construction of the H-matrices are both O(N log N ),
and the complexity of the solution for parameter extraction is
O(N log2 N ).

Index Terms—Contour integral method (CIM), H-
matrix, multiconductor transmission lines, parameter extraction.

I. INTRODUCTION

THE transmission line model is widely used in intercon-
nects, power delivery networks, and other structures in

high-speed digital systems for the analysis of signal integrity
and power integrity. As the integration density of the advanced
circuits grows consistently, accurate and efficient modeling for
broadband characterization of lossy multiconductor transmis-
sion lines is more challenging.

The volume electric field integral equation based method of
moments (MoM) gained the popularity in discretizing only the
source region [1]. The surface-volume-surface electric field in-
tegral equation takes advantage of the transformation relation-
ship between the surface current and the volumetric current [2].
However, the exorbitant number of volumetric meshes to guar-
antee the accuracy at high frequency makes the computation
extremely expensive. The contour integral method (CIM) at-
tracts more attention due to the elimination of the volumetric
mesh. In [3], the potential functions act as the intermediate vari-
ables to compute the per-unit-length impedance. The equivalent
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surface impedance was derived based on CIM to combine with
surface integral equation for modeling 3-D interconnects [4].
The CIM was further extended for the modeling of inhomo-
geneous material with a domain decomposition technique [5].
However, direct MoM solution to CIM would also become com-
putationally prohibitive as the scale of the problem grows larger.

In this letter, an efficient algorithm based on the CIM is pre-
sented for the modeling of massively coupled transmission lines.
To avoid the O(N 2) complexity for the construction of system
equations and O(N 3) complexity for the matrix arithmetics,
the H-matrix-based algorithms [6] are adopted to accelerate the
solution of CIM. In Section II, the Green’s identity based CIM
and the basic MoM solution are presented. In Section III, the
H-matrix-based solution for efficient parameter extraction are
then developed. Procedures for the H-based arithmetics are op-
timized to adapt to the special requirements of CIM as well as
reach the optimal complexity of H-matrix. The accuracy and ef-
ficiency of the proposed method are demonstrated in Section IV,
followed by the conclusion in Section V.

II. BASIC FORMULATIONS

A. Contour Integral Method

Consider a system of M -conductor transmission lines lo-
cated in nonmagnetic uniform dielectrics along z-axis. Under
the quasi-TM assumption, the interior tangential electric field
Ez of the pth conductor is governed by the 2-D Helmholtz
equation

∇2Ez (ρ) − jωμ0σ
(p)Ez (ρ) = jωμ0σ

(p) ∂V (p)

∂z
,ρ ∈ S(p)

(1)
where ω is the angular frequency, μ0 is the permeability, and
σ(p) and S(p) are the conductivity and cross section of the pth
conductor, respectively. The right-hand side of (1) is treated as
the excitation field, and V (p) is the electric potential.

According to the Green’s second identity, Ez can be repre-
sented by the integration along the contour of the conductor,

Ez (ρ) =
∮

l( p )

[
Gp(ρ,ρ′)

∂Ez (ρ′)
∂n

− Ez (ρ′)
∂Gp(ρ,ρ′)

∂n

]
dl′

− ∂V (p)

∂z

[
1 +

∮
l( p )

∂Gp(ρ,ρ′)
∂n

dl′
]
,ρ ∈ S(p) (2)

where Gp(ρ,ρ′) = − j
4 H

(2)
0 (k(p) |ρ − ρ′|) is the Green’s func-

tion of 2-D Helmholtz equation, H(2)
0 is the second-kind Hankel

function of the zeroth order, k(p) =
√

−jωμ0σ(p) is the wave
number inside the pth conductor material, ρ and ρ′ are the ob-
servation and source points, respectively, and l(p) is the contour
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of the cross section S(p) . The normal derivative denotes the
external direction at the contour of the cross section.

In the exterior region of the conductors, the tangential electric
field Ez satisfies the 2-D Laplace equation

∇2Ez (ρ) = 0,ρ ∈ Sc (3)

where Sc represents the nonconductor region. Likewise for the
exterior tangential electric field, we have

Ez (ρ) =
∮

l

[ − G0(ρ,ρ′)
∂Ez (ρ′)

∂n

+ Ez (ρ′)
∂G0(ρ,ρ′)

∂n

]
dl′,ρ ∈ Sc (4)

where G0(ρ,ρ′) = − 1
2π ln (|ρ − ρ′|) is the Green’s function of

the 2-D Laplace equation, and l is the union of the contour of
all the cross sections.

According to the Ampere’s law, the current Ip along the pth
conductor can be represented by the contour integration of the
magnetic field strength H(ρ)

Ip =
∮

l( p )
H(ρ) · dl′ =

1
jωμ0

∮
l( p )

∂Ez (ρ)
∂n

dl. (5)

B. MoM Solution

The contour of the pth conductor is discretized by N (p) seg-
ments. The total number of segments is N , which is the sum of
the N (p) , p = 1, . . . , M . The Ez and ∂Ez/∂n are expanded by
the piecewise basis functions,

Ez (ρ) =
M∑

p=1

N ( p )∑
i=1

α
(p)
i g

(p)
i (ρ),

∂Ez

∂n
=

M∑
p=1

N ( p )∑
i=1

β
(p)
i g

(p)
i (ρ)

(6)

g
(p)
i (ρ) =

{
1, ρ ∈ l

(p)
i

0, ρ /∈ l
(p)
i

(7)

where l
(p)
i represents both the ith segment of the pth conductor

and the corresponding length, and

α =
[
α

(1)
1 , . . . , α

(p)
i , . . . , α

(M )
N (M )

]T

β =
[
β

(1)
1 , . . . , β

(p)
i , . . . , β

(M )
N (M )

]T
(8)

are the coefficient vectors for Ez and ∂Ez/∂n, respectively.
By eliminating the singular terms and adopting the point

matching method, the resultant system equations are

T 1α + T 2β = T 5U

T 3α + T 4β = 0. (9)

The elements of T i , i = 1, 2, 3, 4, are calculated by the con-
tour integration in (2) and (4), and T 5 is the diagonal matrix
obtained by

T 5 = diag{T 1 · vN } (10)

where vN is the N -dimensional full-one column vector.
Since the segments on the boundary of a conductor have

identical potential, the excitation vector U can be represented by

U = Q · ∂V
∂z

(11)

where V =
[
V1 , . . . , Vp , . . . , VM

]T
is the electric potential

vector, and

Q =

⎡
⎢⎢⎢⎢⎢⎣

vN ( 1 )

. . .
vN ( p )

. . .
vN (M )

⎤
⎥⎥⎥⎥⎥⎦

. (12)

According to (5), the current vector is

I =
[
I1 , . . . , Ip , . . . , IM

]
=

1
jωμ0

P · β (13)

where

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

vT
N ( 1 ) P

(1)

. . .
vT

N ( p ) P
(p)

. . .
vT

N (M ) P
(M )

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

and the matrices P (p) = diag{l(p)
i } are formatted by the length

of each segment on the pth conductor.
Based on the Telegrapher’s equation, the electric potential

vector V and the current vector I are related by

−∂V
∂z

=
[
R + jωL

] · I. (15)

The resistance and inductance matrices thus satisfy the
following equation,

R + jωL = −jωμ0

(
P · X · T 5 · Q

)−1

(16)

where

X =
(
T 2 − T 1 · T−1

3 · T 4
)−1

. (17)

III. H-MATRIX-BASED SOLUTION

Direct MoM solution with O(N 3) complexity is computa-
tionally prohibitive as N becomes large, which inspired us to
adopt the efficient H-matrix framework for the solution of CIM.
According to the methodology of the H-matrix, the basis func-
tions are first clustered based on the spatial information. The
interactions between clusters are identified as admissible and in-
admissible block clusters by the admissibility condition, which
judges the far-field and near-field groups according to the dis-
tances and the diameters of the clusters [6].

However, the conventional H-matrix-based solution of CIM
cannot reach the optimal complexity, due to the problems in
two aspects:

1) The multiplication of H-matrix AN × N and full-rank
matrix BN × M is of complexity O(NM log N).

2) The sparsity of the intermediate full-rank matrices P and
Q are not fully exploited.

A. Clustering Scheme

According to (11)–(14), P and Q are nearly block diago-
nal, except that the diagonal elements are block vectors, which
means each row of P or each column of Q has only one nonzero
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Fig. 1. Examples of the clustering method for the multiconductor transmission
lines. (a) Conventional method. (b) Proposed method.

Fig. 2. Matrix layout of T 1 and T 2 . (a) Set rank-0 matrices. (b) Merge rank-0
matrices.

block. The matrix-vector product (MVP) with the block vec-
tors, named as the incomplete MVP, considers only the nonzero
block, which proportionally reduces the number of operations.

Since the basis functions are regrouped, the MVP ofH-matrix
also involves the permutation of the vector. We need a clustering
scheme that keeps the properties of P and Q even with the
permutation. In this respect, the basis functions belonging to the
same conductor should be partitioned together. The proposed
clustering scheme has the following two steps.

1) Individual conductors are clustered bisectionally level
by level, until each cluster contains only one single
conductor.

2) Basis functions belonging to each conductor are geomet-
rically bisected, until the size of the cluster reaches the
prefixed maximum size nmax .

An example of the conventional and proposed clustering
scheme is shown in Fig. 1.

B. Optimization of Low-Rank Compression

The inadmissible blocks correspond to full-rank matrices.
The admissible blocks correspond to low-rank matrices, which
can be built via the adaptive cross approximation (ACA) [7].
The reduced singular value decomposition (rSVD) is adopted to
further compress the low-rank matrices. Both ACA and rSVD
are performed with the prescribed threshold ε.

The coarsening of the H-block merges small admissible
blocks to generate larger blocks, which keeps the accuracy and
ensures the feasibility in the meantime [8]. Besides, T 1 and T 2
are sparse system matrices, since no internal interactions exist
between the basis functions on any two different conductors. The
off-diagonal blocks that correspond to the interactions between

Fig. 3. Cross-sectional view of the transmission lines.

Fig. 4. Extraction of the resistance and inductance matrices for the 5 × 5
transmission lines. (a) Resistance parameters. (b) Inductance parameters.

different conductors are set to be rank-0 matrices, and merged
level-by-level without the loss of precision, as shown in Fig. 2.

C. Computational Cost Analysis

The electrical size for the structures in high-speed systems
are relatively small, thus the max rank of the low-rank ma-
trices keeps nearly constant with the prescribed accuracy [9].
The CPU time and memory cost for the construction of the
H-matrices T i , i = 1, 2, 3, 4, have the optimal complexity of
O(N log N) [6].

The intermediate matrix X involves the H-based matrix-
matrix product (MMP) and matrix inversion, both of which
have the complexity of O(N log2 N) [6]. The MMP of diagonal
matrix T 5 and Q requires only O(N) operations, and does not
change the structure of Q. The number of operations for the
multiplication of X and Q can be estimated by

#operation =
M∑

p=1

O(N (p) log N) = O(N log N). (18)

which is the sum of incomplete MVP operations for the M
columns. P and Q are very sparse matrices with only N nonzero
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Fig. 5. Performance of the proposed method for simulating massively coupled
transmission lines. (a) Matrix construction time. (b) Memory cost. (c) Solution
time for parameter extraction.

elements. Therefore, the MMP with P or Q has the same cost as
the MVP. Besides, the coarsening of H-matrix has a complexity
of O(N log N) [8]. Taken all the above into consideration, the
overall computational complexity of the H-matrix-based solu-
tion for parameter extraction is O(N log2 N).

IV. NUMERICAL EXAMPLES

In this section, the distributed resistance and inductance ma-
trices of massively coupled transmission lines are extracted to
show the accuracy and efficiency of the proposed method. The
structure consists of an N -by-N cylinder conductor array. Con-
ductors are labeled from 1 to N 2 , and the N 2 th conductor acts as
the reference conductor, as shown in Fig. 3. The radius of each
cylinder is 80 μm, and the pitch is 240 μm. The conductivity of
each conductor is σ = 5.72 × 107 S/m.

A. Validation of Accuracy

In the first example, we choose N = 5. Each conductor is
discretized by 500 segments, thus the total number of segments
is 12 500. The maximum size nmax for clustering is set to be
50, the admissible coefficient is 0.5, and the error threshold
for both ACA and SVD is ε = 10−4 . The numerical results, as
shown in Fig. 4, are compared with those from the commercial
software ANSYS Q3D [10], of which the 2-D solver is based
on the finite element method (FEM). The relative errors of the
extracted resistance and inductance parameters with respective
to FEM validate the high accuracy of the proposed method.

B. Validation of Efficiency

In the second example, the size of the transmission lines
varies as N = 2, 4, 8, 16, 32. All the parameters for H-matrix
and the scale of discretization are kept the same as those in the
former example. The number of segments ranges from 2000
to 512 000. The simulation is performed at 1 GHz. The CPU
time and memory cost are shown in Fig. 5. It can be observed
that both the CPU time cost for matrix construction and mem-
ory cost have nearly O(N log N) complexity, and the solution
time for parameter extraction has O(N log2 N) complexity. The
performance illustrated by the numerical example is in accor-
dance with the theoretical analyses.

V. CONCLUSION

The H-matrix accelerated CIM is presented for the model-
ing of massively coupled transmission lines. The procedures of
the solution for parameter extraction are optimized to keep the
optimal complexity of H-matrix. Numerical examples demon-
strate that the method provides similar precision as the commer-
cial software. The complexities of the matrix construction and
memory cost are O(N log N), and the complexity of the H-
matrix-based solution for parameter extraction is O(N log2 N).
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