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Abstract— Due to the temperature-dependent resistivity of
power distribution network (PDN) interconnects, a wiser and
necessary strategy is to proceed the electrical–thermal cosimu-
lation in order to include the thermal effects caused by Joule
heating. As a natural domain decomposition method (DDM),
in this article, a discontinuous Galerkin (DG) method is proposed
to facilitate the steady-state electrical and thermal coanalysis.
With the intention to avoid solving a globally coupled steady-state
matrix system equations resulted from the implicit numerical
flux in DG, the block Thomas method is deployed to solve
the entire domain in a subdomain-by-subdomain scheme. As a
direct solver, the block Thomas method is free of convergence
problem frequently occurring in iterative methods, such as block
Gauss–Seidel method. The capability of the proposed DG method
in handling multiscale and complex 3-D PDNs is validated by
several representative examples.

Index Terms— DC IR-drop, discontinuous Galerkin (DG)
method, electrical–thermal cosimulation, integrated circuits
(ICs), power distribution network (PDN), steady state.

I. INTRODUCTION

THE continuing decrease in dc supplied voltage to the
chips and switching circuits requires more efforts in

managing the ripple across the power distribution network
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(PDN) [1], while the ever-rising integration capacity increases
the current density, which brought significant challenges to
the design of PDNs in order to achieve the intended power
integrity (PI) as well as the signal integrity (SI) performance.
Moreover, the nonideal resistance of PDN interconnects fur-
ther deteriorates the PI performance due to the Joule heating,
where the thermal effects not only increase the dc voltage
drop but also possibly put the high-speed signals under
risk. Thereby, it is excessively necessary and important to
implement the electrical–thermal cosimulation [2] in order
to maintain the performance of the whole integrated circuits
(ICs). With this objective in mind, various approaches have
been proposed in the past few years.

The first kind of approaches for the dc IR-drop analysis is
based on equivalent circuit models [3], [4] in terms of finite-
difference discretization, in which the discretized Laplace
equation governing the potential is first transformed into a
2-D one, and then, it is further approximated by a resistive
network. However, the IR-drop is lack of consideration of the
thermal effect.

To capture the thermal effects, soon after, numerical algo-
rithms, such as finite volume method (FVM) [5] and finite-
element method (FEM) [6]–[8], are proposed to solve the
electrical and the thermal equations together. Due to the
temperature-dependent material properties, the two equations
are solved in an iterative scheme.

In this article, a discontinuous Galerkin (DG) method [9]–
[11] is proposed to conduct the rigorous dc-IR drop analysis
with thermal effects included. As the combination of FVM
and FEM, the DG method inherits the advantages of FVM and
FEM. Like FVM [12], solutions in the adjacent subdomains
communicate with each other by the numerical flux, and
it is thus a natural domain decomposition method (DDM);
on the other hand, it is capable of flexibly making use of
high-order basis functions to approximate the solution, and
thereby such as FEM [13], it can achieve high-order accuracy.
However, for the dc-IR drop analysis, both the electrical and
the thermal equations are in a steady state, and the numerical
flux used for information exchange is in an implicit form,
consequently resulting in a globally coupled matrix equation,
which dramatically complicates the problem. To beat this
deficiency, the whole computational domain is first tessellated
into a number of nonoverlapping subdomains in a nested
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sequence, and then, the system matrix equation can be formu-
lated into a block tridiagonal matrix system where the upper
and the lower blocks resulted from the incoming numerical
flux represent couplings between the neighboring subdomains,
and finally, the block Thomas method [14] is applied to
solve the implicitly coupled matrix system in a subdomain-by-
subdomain scheme. Thereby, the advantage possessing by the
explicit DG algorithm is kept, namely, it only needs to solve
a number of smaller matrix equations instead of a global one.

II. ELECTRICAL–THERMAL COANALYSIS

WITH DG FORMULATION

A. Electrical Equation

Based on the vector form of Ohm’s law, for the dc-IR drop
analysis, the current density J in a conductor is defined as

J = σE (1)

where σ is the electrical conductivity of the conductor, and
the electric field E can be expressed as a function of electrical
potential φ, namely

E = −∇φ. (2)

With (2), (1) can be reformulated into

J = −σ∇φ. (3)

Further resorting to the equation of continuity of electric
charge, the current density J should satisfies the divergence-
free condition given by

∇ · J = 0. (4)

Based on the governing equations in (3) and (4), the current
density as well as the potential distribution over the whole
PDN can be uniquely determined in terms of the following
boundary conditions:

φ = φ0 on �dc

n̂ · J = φ

RL S
on �R

where �dc is the Dirichlet boundary surface with voltage
already given, �R is the impedance boundary surface connect-
ing with an external load such as decoupling capacitors, match
network, chips, and memories, RL is the resistance value of
the external equivalent load, and S is the area of the cross
section of the impedance boundary surface.

In order to solve (3) and (4) and y the proposed DG
method, the computational domain � is first decomposed into
a number of nonoverlapping and conformal subdomains �k

(k = 1, . . . , K ), and each subdomain is further teared into a
series of tetrahedrons �i

k (i = 1, . . . , Kk); then, the Galerkin
test is applied to (3) and (4) pertinent to the kth subdomain,
which leads to the following two new formulations:∫

�k

∇ϕk
p · JkdV =

∫
�kl

ϕk
p(n̂ · J̃k)d S (5)

∫
�k

ψk
ξ,q · J k

ξ dV =
∫
�k

σ k
∂ψk

q

∂ξ
·φndV −nξ

∫
�kl

σ kψk
ξ,q ·φ̃kd S (6)

where ϕk
p and ψk

q are the pth and the qth nodal basis functions
for the potential and the current density, respectively; n̂ is an
unit normal vector pointing from the present subdomain k to its
neighboring subdomain l, and J̃k and φ̃k are called numerical
flux defined by [15]

n̂ · J̃k = C10(n̂ · Jk + n̂ · Jl)+ C11(n̂ · Jk − n̂ · Jl)

+ C12(φ
k − φl) (7)

φ̃k = C20(φ
k + φl)+ C21(n̂ · Jk − n̂ · Jl)

+ C22(φ
k − φl). (8)

In this article, the upwind flux is employed, where the
parametric coefficients are defined as: C10 = 0.5, C11 = 0,
C12 = −4, C20 = 0.5, C21 = 0, and C22 = 0.

To obtain a fully discrete matrix system, next, the potential
φk and the current density Jk are further approximated by
nodal basis functions

φk =
Pk∑

p=1

γ k
pϕ

k
p (9)

J k
ξ =

Qk
ξ∑

q=1

νk
ξ,qψ

k
ξ,q (10)

where Pk and Qk
ξ denote the total number of basis functions

for the expansion of potential φk and current density Jk
ξ (ξ =

x, y, z) in the kth subdomain, respectively; γ k
p and νk

ξ,q are the
corresponding expansion coefficients to be determined.

Substituting (7)–(10) into (5) and (6), the following matrix
equations can be reached:

Mk
φ jν

k + Fkk
φ jν

k + Fkl
φ jν

l + Fkk
φφγ

k + Fkl
φφγ

l = 0 (11)

Mk
j jν

k + Mk
jφγ

k + Fkk
jφγ

k + Fkl
jφγ

l = f k
�dc

(12)

with f k
�dc

rising from the Dirichlet boundary condition, and

νk = [
νk

x νk
y νk

z

]T
(13)

νl = [
νl

x νl
y νl

z

]T
(14)

Mk
φ j =

[
Mk
φ jx

Mk
φ jy

Mk
φ jz

]
(15)

Mk
j j =

⎡⎣Mk
jx jx

0 0
0 Mk

jy jy
0

0 0 Mk
jz jz

⎤⎦ (16)

Mk
jφ = [

Mk
jxφ

M jyφ M jzφ

]T
(17)

Fkk
φ j =

[
Fkk
φ jx

Fkk
φ jy

Fkk
φ jz

]
(18)

Fkl
φ j =

[
Fkl
φ jx

Fkl
φ jy

Fkl
φ jz

]
(19)

Fkk
jφ =

[
Fkk

jxφ
Fkk

jyφ
Fkk

jzφ

]T
(20)

Fkl
jφ =

[
Fkl

jxφ
Fkl

jyφ
Fkl

jzφ

]T
(21)
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where the general definitions of matrix entries mentioned
earlier are given by[

Mk
φ jξ

]
pq

=
∫
�k

∂ϕk
p

∂ξ
· ψk

ξ,q dV (22)[
Mk

jξ jξ

]
pq

=
∫
�k

ψk
ξ,p · ψk

ξ,q dV (23)

[
Mk

jξ φ

]
pq

= −σ k
∫
�k

∂ψk
ξ,p

∂ξ
· ϕk

qdV (24)[
Fkk
φ jξ

]
pq

= −nξC10

∫
�kl

ϕk
p · ψk

ξ,q d S (25)[
Fkl
φ jξ

]
pq

= −nξC10

∫
�kl

ϕk
p · ψ l

ξ,q d S (26)

[
Fkk
φφ

]
pq

= −C12

∫
�kl

ϕk
p · ϕk

qd S (27)

[
Fkl
φφ

]
pq

= C12

∫
�kl

ϕk
p · ϕl

qd S (28)[
Fkk

jξφ

]
pq

= nξC20

∫
�kl

σ kψk
ξ,p · ϕk

qd S (29)[
Fkl

jξφ

]
pq

= nξC20

∫
�kl

σ kψk
ξ,p · ϕl

qd S. (30)

As the dc current flowing through metal conductors, it will
be accompanied by Joule heating that is evaluated by

Q = σ |E|2. (31)

Thus, the temperature of conductors will rise, which con-
sequently alters the resistivity of conductors in terms of the
relation given by

ρ(T ) = ρ0[1 + α(T − T0)] (32)

with ρ0 denoting the resistivity at temperature T0 and α
representing the conductor’s temperature coefficient.

As a result, to get the dc IR drop with thermal effects
included, the thermal equation must be solved simultaneously.

B. Thermal Equation

Though the temperature is a function of time, only the
temperature at the steady state is more of interest, and thus,
the steady-state thermal equation is going to be solved, which
is defined as

−∇ · q + Q = 0 (33)

q = −κ∇T (34)

where q is the thermal flux, κ is the thermal conductivity, Q
is the thermal source given in (31), and q and T are subjected
to the boundary conditions given by

T = T0 on �dc (35)

n̂ · q = −h(T − Ta) on �c (36)

with Ta denoting the ambient temperature and h representing
the convection coefficient.

Similar to the DG formulation process for the electrical
equation, the Galerkin test is applied to (33) and (34)∫

�k

∇ϕ̆k
p · qkdV =

∫
�k

ϕ̆k
p · QkdV +

∫
�kl

ϕ̆k
p(n̂ · q̃k)d S (37)∫

�k

ψ̆k
ξ,q ·qk

ξ dV =
∫
�k

κk∂ξ ψ̆
k
q ·T kdV −nξ

∫
�kl

κkψk
ξ,q ·T̃ kd S (38)

where ϕ̆k
p and ψ̆k

ξ,q are the pth and qth nodal basis functions
for T and qξ (ξ = x, y, z) in the kth subdomain, respectively;
the other two terms q̃k and T̃ k are termed numerical flux
defined by [15]–[17]

n̂ · q̃k = Č10
(
n̂ · qk + n̂ · ql

) + Č11
(
n̂ · qk − n̂ · ql

)
+ Č12

(
T k − T l

)
(39)

T̃ k = Č20
(
T k + T l

) + Č21
(
n̂ · qk − n̂ · ql

)
+ Č22

(
T k − T l

)
. (40)

In this article, the upwind flux is employed [15], i.e.,
Č10 = 0.5, Č11 = 0, Č12 = −4, and Č20 = 0.5, Č21 = 0,
and Č22 = 0.

Next, substituting (39) and (40) into (37) and (38) and
further expanding the unknowns by the nodal basis functions:

T k = ∑Nk
n=1 λ

k
n ϕ̆

k
n and qk

ξ = ∑Mk
ξ

m=1 χ
k
ξ,mψ̆

k
ξ,m with λk

n and χ k
m

representing the unknown expansion coefficients, the follow-
ing matrix equations can be reached after a few mathematical
manipulations:

Mk
T qχ

k +Fkk
T qχ

k +Fkl
T qχ

l +Fkk
T T λk +Fkl

T T λl = f k
�c

(41)

Mk
qqχ

k + Mk
qT λk + Fkk

qT λk + Fkl
qT λl = f k

�dc
(42)

where the definitions of matrices as well as the corresponding
entries involved in (41) and (42) can be conveniently derived
by permuting the basis functions and related material parame-
ters given in the electrical equations from (11) to (30).

C. Electrical–Thermal Coanalysis

Due to the temperature-dependent electric conductivity,
the electrical matrix equations (11) and (12) couple with the
thermal equations (41) and (42), resulting in a nonlinear matrix
system. To solve it accurately and efficiently, the electrical and
the thermal equations will be iteratively solved using the fixed
point method. The pesudocode of the solving scheme is shown
in the following.

Intializing: ρ = ρ0, T = T0, the stop criterion ζ0, and
the number of iterations Ni

For i = 1 : Ni do
Step 1 : Solve the electrical equation
Step 2 : Calculate Joule Heating
Step 3 : Solve the thermal equation
Step 4 : Update the resistivity
Step 5 : Calculate L2 relative norm error δρ

If δρ<ζ0 then
Output solutions of interests
Exit

End If
Step 6 : i = i + 1

End For
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D. Block Thomas Method

Due to the implicit form of the numerical flux, the estab-
lished matrix equations in (11), (12), (41), and (42) will couple
with matrix equations in the adjacent subdomains, which
results in a huge matrix system, e.g., the dimension of the elec-
trical matrix equation is around

∑K
k=1

(
Pk + Qk

x + Qk
y + Qk

z

)
by

∑K
k=1

(
Pk + Qk

x + Qk
y + Qk

z

)
, and the dimension of the

thermal matrix equation is around
∑K

k=1

(
Nk +Mk

x +Mk
y +Mk

z

)
by

∑K
k=1

(
Nk +Mk

x +Mk
y +Mk

z

)
.

To solve the whole matrix system in a subdomain-by-
subdomain scheme, either the block Gauss–Seidel method
or the block Thomas method can be referred. The block
Gauss–Seidel method is an iterative method, and thus, its
convergence cannot be guaranteed if the formulated matrix
equation is not symmetrically positive definite or diagonally
dominant. Instead, the block Thomas method is a direct
solver [18], and thereby, it is free of convergence problem.
To implement the block Thomas method, the teared subdo-
mains are arranged in a nested sequence, which results in a
serial coupling scheme. As a result, a block tridiagonal matrix
pattern is formed.

To have an intuitive insight into the tridiagonal matrix
system formulation, the matrix equations (11) and (12) for
the electrical potential are rewritten as a compact form

Mkυk + Fklυ l = f k (43)

with

υk,l =
[

νk,l

γ k,l

]
(44)

f k =
[

0

f k
�dc

]
(45)

Mk =
[

Mk
φ j + Fkk

φ j Fkk
φφ

Mk
j j Mk

jφ + Fkk
jφ

]
(46)

Fkl =
[

Fkl
φ j Fkl

φφ

0 Fkl
φφ

]
. (47)

Because of the nested subdomains, the whole matrix system
can be written as a block tridiagonal one, that is

⎡⎢⎢⎢⎢⎢⎣
M1 F12 0 · · · 0
F21 M2 F23 · · · 0
0 F32 M3 · · · 0
...

...
...

. . .
...

0 0 · · · FK ,K−1 MK

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
υ1

υ2

υ3

...
υK

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
f 1

f 2

f 3

...

f K

⎤⎥⎥⎥⎥⎥⎦.
(48)

To proceed the block Thomas method, the matrix on the left-
hand side should be written as the production between a
lower and a upper block tridiagonal matrix in terms of LU

decomposition, namely⎡⎢⎢⎢⎢⎢⎣
M1 F12 0 · · · 0
F21 M2 F23 · · · 0
0 F32 M3 · · · 0
...

...
...

. . .
...

0 0 · · · FK ,K−1 MK

⎤⎥⎥⎥⎥⎥⎦ = LB UB (49)

with

UB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I F̃12 0 0 · · · 0
0 I F̃23 0 · · · 0
0 0 I F̃34 · · · 0
...

...
...

...
. . .

...

0 · · · 0 0 I F̃K−1,K

0 · · · 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(50)

LB=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M̃1 0 0 · · · 0 0
F21 M̃2 0 · · · 0 0
0 F32 M̃3 · · · 0 0
...

...
...

. . .
...

...

0 · · · 0 FK−1,K−2 M̃K−1 0
0 · · · 0 0 FK ,K−1 M̃K

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(51)

where

M̃1 = M1 (52)

M̃k = Mk − Fk,k−1 F̃k−1,k , k = 2, . . . , K (53)

F̃k,k+1 = (
M̃k

)−1
Fk,k+1, k = 1, . . . , K − 1. (54)

Instead of solving (48) straightforwardly, the solution υ can
be obtained in two steps: 1) solving LBυ̃ = f first and 2) then
solving UBυ = υ̃. The pseudocode of the block Thomas
method is provided as follows.

Solving Scheme: Block Thomas Method
Solve F̃12: F̃12 = (

M1
)−1

F12

For k = 2 : K − 1 do
M̃k = Mk − Fk,k−1 F̃k−1,k

Solve F̃k,k+1 : F̃k,k+1 = (
M̃k

)−1
Fk,k+1

End For
M̃K = MK − FK ,K−1F̃K−1,K

Solve υ̃1: υ̃1 = (
M1

)−1
f 1

For k = 2 : K do
Solve υ̃k : υ̃k = (

M̃k
)−1(

f k − Fk,k−1υ̃k−1
)

End For
υK = υ̃K

For k = K − 1 : −1 : 1 do
υk = υ̃k − F̃k,k+1υk+1

End For

It is noted that the whole domain is solved by a subdomain-
by-subdomain strategy, thus dramatically decreasing the
dimension of the matrix equation, i.e., the dimension of the
matrix equation to be solved now is

(
Pk + Qk

x + Qk
y + Qk

z

)
by(

Pk + Qk
x + Qk

y + Qk
z

)
, which no doubt significantly lowers

the computational request.
The abovementioned formulations are also valid for the

thermal matrix equations in (41) and (42), and the details will
not be repeated here due to the limited space.
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Fig. 1. Geometry information of the power plane. The length l, the width
w, and the thickness t are 27, 6, and 0.05 mm.

Fig. 2. Calculated voltage drop when different values of VDD is attached.

III. NUMERICAL RESULTS

In this section, the proposed algorithm is validated by
several representative examples, where the accuracy and the
capability on modeling complex geometries are benchmarked.
For all examples, the first-order nodal basis functions are used,
i.e., the basis functions are located at four vertices of each
tetrahedron. In addition, the ground planes in the following
examples are virtual ones, and the electric potential on them
is assumed to be zero.

A. Thin Power Plane

With the aim to verify the accuracy of the proposed algo-
rithm, a thin metal plane shown in Fig. 1 is investigated.
A voltage source VDD is placed at the left-end surface of the
plane, while the right-end surface of the plane is attached to a
resistive load with RL = 0.01458 �. In addition, the convec-
tion boundary condition is applied at the top and the bottom
surfaces with convection coefficient h = 500 W/(m2 · K).
The resistivity ρ0, the thermal conductivity κ , the temperature
coefficient α, and the ambient temperature Ta are set as
1.8 × 10−8 �m, 400 W/(m · K), 0.0039 K−1, and 300 K,
respectively. The plane is split into 20 subdomains along the
length direction, which results in 92 410 and 92 500 unknowns
for the electrical and the thermal matrix system, respectively.

The accuracy of the proposed DG algorithm is validated
by comparing it with those obtained from FEM simulation.
As shown in Fig. 2, the results are consistent with each other
excellently. Moreover, the results without thermal effects are
also given and compared with the analytical results calculated
by Vdrop = VDD(R/R + RL ) with R = ρ0l/S and S denoting
the area of the cross section. The relative error between the

Fig. 3. Relative difference for voltage drops calculated by the proposed
algorithm and the corresponding reference method.

Fig. 4. Convergence properties pertinent to different dc supplies.

Fig. 5. “Swiss cheese” effect: a large number of holes are present on the
power plane. The dimension and material property of the plane are the same
as those in the first example, the radius of the via hole is 0.508 mm, and the
separation distances between two neighboring via holes are 1 mm along the
width direction and 0.75 mm along the length direction.

proposed algorithm and the reference solution is also plotted
in Fig. 3.

To have a basic insight into the convergence rate of the
iterative scheme, the number of iterations to reach the intended
tolerance is shown in Fig. 4. As can be seen, it requires more
iterations with the increase of VDD, which is due to that more
Joule heating is generated and thus alters the resistivity of the
conductor more dramatically. The corresponding CPU time
and the memory consumption (VDD = 10 V case) for the
proposed DG method are around 3 min and 600 M, while
FEM takes around 10 mi with memory cost less than 100 M.
As can be seen, although the proposed algorithm has better
CPU efficiency, its memory cost is also higher than FEM,
which is due to that the matrix F̃ in (50) is no longer a sparse
one.

B. Swiss Cheese Effect

A large number of holes are formed around vias passing
through the power planes, and this “Swiss cheese” effect,
as shown in Fig. 5, can seriously deteriorate the PI perfor-
mance of the power plane. The narrower space between the
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Fig. 6. Voltage drop (units: V) of the power plane in the presence of
“Swiss cheese” effect. (a) Results by DG method-based electrical–thermal
cosimulation. (b) Results by FEM-based electrical–thermal cosimulation.

Fig. 7. Voltage drop (units: V) of the power plane in the presence of “Swiss
cheese” effect calculated by the DG method without considering thermal
effect.

adjacent voids significantly increases the current density, thus
resulting in a large amount of Joule heating. Consequently,
the impedance of the power plane becomes larger as well,
which no doubt is detrimental to the dc IR-drop performance.

To verify the abovementioned statement, a voltage source
with VDD = 1 V is attached to the left-end surface, while
the right end is connected to a resistive load with RL =
0.01458 �; the convection boundary condition is applied
simultaneously to the top and the bottom surface with con-
vection coefficient h = 500 W/(m2 · K). The whole plane is
teared into 20 subdomains along the length direction, resulting
in 1 35 094 unknowns for the electrical equation and 1 35 216
unknowns for the thermal equation. First, the voltage drop is
characterized based on the proposed electrical–thermal cosim-
ulation algorithm, as shown in Fig. 6. For accuracy validation,
the reference result calculated by FEM is also given. Excellent
consistency is obviously noted. To have a better insight into
the impact of thermal effect on the resistance, the voltage drop
excluding thermal effect is also calculated by the proposed DG
method with the result shown in Fig. 7. The maximum voltage
drop considering thermal effect is increased from 0.1528 to

Fig. 8. Temperature profile (units: K) of the power plane in the presence of
“Swiss cheese” effect. (a) DG method. (b) FEM.

Fig. 9. Geometrical profile of a 3-D power plane having 12 layers stacked
vertically.

0.1876 V, i.e., 23% more voltage drop is sacrificed due to Joule
heating. Second, the temperature profile of the power plane
obtained from the proposed DG algorithm is also presented
in Fig. 8. As can been seen, the temperature in the proximity
of holes is obviously higher. The maximum temperature is
around 388 K, while the maximum temperature without “Swiss
cheese” effect obtained in the first example is around 343 K,
which further reveals the negative impact of “Swiss cheese”
effect. With regard to the accuracy, the simulation results by
FEM are also provided for verification. Again, very good
agreements are achieved. For this example, the CPU time and
the memory cost of the proposed algorithm are around 4 min
and 800 M, respectively, whereas FEM takes about 12 min
with memory cost less than 100 M.

C. PDN Composed of 12 Vertically Stacked
Power Planes

In the third example, a 3-D PDN with 12 layer power
planes is investigated. As shown in Fig. 9, the vertically
stacked power planes are chained by vias in gray color.
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Fig. 10. Convergence property of the iterative electrical–thermal cosimulation
scheme for the third example.

Fig. 11. Voltage drop (units: mV) calculated by the proposed DG algorithm.

The length, the width, and the thickness of each power plane
are 14.5, 5.08, and 0.0508, respectively; the radius and the
height of vias are 0.127 and 0.508 mm, respectively. The
material properties are the same as those in the first example.
The voltage source VDD = 1 V is placed over the top surface
of the black via, the green vias are connected with resistive
loads with RL = 0.5 �, and the air convection boundary with
h = 500 W/(m2 · K) is placed over the bottom surface of
power plane in the first layer. The entire domain is tesselated
into 24 subdomains along the vertical direction in a nested
sequence, which produces 7 21 783 unknowns for the electrical
equation and 7 21 796 unknowns for the thermal equation. The
electrical–thermal cosimulation takes five iterations to reach
the predefined stop criterion δρ = 10−3 with convergence
scheme shown in Fig. 10. The corresponding CPU time is
around 4 h and 20 min, while the memory cost is about 12 G.
The 3-D potential distribution and the 3-D temperature profile
are plotted in Figs. 11 and 12, respectively. It is noted that
the temperature of the via attached to the voltage source is
obviously higher than others due to the higher current density,
and the maximum IR-drop is 45.6 mV, while the IR-drop
without thermal effect is 33.5 mV, i.e., resulting in 36.1%
more voltage loss.

D. PDN Composed of 15 Layers of Vertically Stacked
Power Planes

As the last example, a global PDN for a 3-D IC is studied,
in which 15 layers of power planes are vertically stacked along
the thickness direction, and a number of resistive loads are
placed at each power plane, as shown in Fig. 13, in which
the red vias are power vias used to chain the power planes
together, whereas the green vias are signal vias connecting to

Fig. 12. Temperature profile (units: K) calculated by the proposed DG
algorithm.

Fig. 13. Illustration of the 3-D PDN, where the red vias are named power
vias used for dc supply and the green vias are called signal vias connecting
to the active modules such as CPU or memory dies.

Fig. 14. Voltage drop (units: mV) calculated by the proposed DG algorithm.

the CPU or the memory dies. The length, the width, and the
thickness of each power plane are 13.05, 7.08, and 0.0508 mm,
respectively; the radius and the height of power vias are 0.127
and 0.508 mm, whereas the radius and the height of the
signal vias are 0.127 and 0.381 mm, respectively. To consider
the load effects of dies, all signal vias are terminated by
five parallel connected resistive loads with RL = 50 �.
To analyze the dc-IR drop, a 1-V voltage source used as
the dc supply is attached to the top surface of the black via,
and the air convection cooling with convection coefficient =
100 W/(m2 ·K) is placed over the bottom surface of the power



1042 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 6, JUNE 2020

Fig. 15. Temperature profile (units: K) calculated by the proposed DG
algorithm.

Fig. 16. Convergence property of the iterative electrical–thermal cosimulation
scheme for the fourth example.

plane in the first layer (bottom layer). The whole structure is
decomposed into 30 subdomains along the thickness direc-
tion, which introduces 8 62 326 unknowns for the electrical
equation and 8 62 336 unknowns for the thermal equation, but
the maximum dimension of the subdomain matrix system is
44 612 × 44 612. In Figs. 14 and 15, the calculated voltage
drop and the temperature distribution are shown, where the
maximum IR-drop is 18.1 mV (the IR-drop without thermal
effect is 14.8 mV and 22.3% more loss is introduced due
to Joule heating) and the lowest and the highest temperature
are increased to 354 and 379 K, respectively. The required
iteration number with the desired accuracy σρ = 10−4 is 5,
and the convergence scheme is shown in Fig. 16. The corre-
sponding CPU time for the proposed DG method is about 6
h and 10 min, and the memory cost is around 15 GB.

IV. CONCLUSION

A DG method is developed in this article to investigate
the dc IR-drop of ICs, where the impact of thermal effects
due to Joule heating is included. The temperature-dependent
material property results in a nonlinear matrix system, which
is iteratively solved by the fixed point method. Due to the
implicit numerical flux, the unknowns couple with each other
in different subdomains, which causes a huge matrix system.
To keep the advantage of DG in solving the entire domain in a

subdomain-by-subdomain scheme, the block Thomas method
is resorted, which is a direct solver, and thus, it is free of
convergence issues. The proposed approach is benchmarked
by four examples by way of comparing with FEM reference
and/or analytical solutions.
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