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ABSTRACT A generalized transition matrix (GTM) model combined with discontinuous Galerkin (DG)
method is proposed to analyze the scattering problems of open-ended cavities. A virtual reference surface
is put to seal the opening of an open cavity and can separate it into an exterior region and an interior
region. By mapping the scattering properties of the internal components onto the reference surface, the
information interaction of the GTM model occurs on the reference surface only. With its features of
nonconformal meshes at the boundary, the DG method makes the model feasible and accurate regardless
of the normal continuity of the surface current at the transitional interface. The GTM model is independent
of the exterior structure of the cavity and the external fields. The computational cost can be significantly
decreased when the GTM model with the identical inner region is reused. Numerical examples demonstrate
good precision and efficiency of the presented method.

INDEX TERMS Generalized transition matrix (GTM), discontinuous Galerkin (DG), open cavity, reference
surface.

I. INTRODUCTION

THE ANALYSIS of electromagnetic scattering proper-
ties of open-ended cavities has recently obtained a lot of

attentions due to the importance of radar cross-section (RCS)
problems. Open-ended metal cavities are widely applied
in electronic components, packaging technology and elec-
tromagnetic protection, such as arrays with a dielectric
resonator antenna (DRA) embedded in the open metallic
cavity [1], the cavity diplexer [2], and the coplanar stripline
with a metal shielding cavity [3]. To determine the res-
onator modes of DRA configuration, both the radiation fields
and the scattering fields are necessary to be considered.
Therefore, a highly efficient numerical method for calcu-
lating the electromagnetic properties of open cavities with
complex interior structures deserves consideration.
Traditional numerical methods such as the method

of moment (MoM) [4], [5] and the finite element

method (FEM) [6] have been used to accurately analyze
open cavities. Nevertheless, such methods are very time-
consuming when fine internal structures are set inside the
cavity. Some hybrid numerical methods have been studied,
such as physical optics-finite difference time domain [7],
and hybrid FEM [8], to analyze the scattering by tracking
the fields from the cavity through modal techniques apply-
ing a relevant generalized scattering matrix. A multi-method
and multi-domain coupling strategy based on generalized
scattering matrix calculations in subdomains is developed
in [9]. The generalized scattering matrix is calculated by
various methods like FEM or the electric field integral
equation (EFIE) in each subdomain. But the application in
multi-cavities system is not considered in these methods.
A radiation computation scheme based on the field sam-
pling in an open slot on the surface of the shielded box is
applied to model the radiation fields from the printed circuit
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board (PCB) inside the box [10], however, the coupling
effect from the external field on the internal circuit is ignored.
The finite element boundary integral method is presented
to solve scattering problems for cavities in [11], [12]. The
equivalence principle algorithm for domain decomposition
is introduced in the case where the equivalence surfaces
intercept with current-carrying metallic structures [13].
In our previous work [14], a generalized transition

matrix (GTM) model [15] based on the equivalence principle
has been presented to capture the electromagnetic properties
of an open-ended cavity with interior composition. However,
the currents flowing across the junctions are defined by con-
ventional Rao-Wilton-Glisson (RWG) basis functions [16].
It is required to extend surface currents to nearby regions
of the junctions to make the meshes matching across the
junctions, which is inconvenient in practical application. For
example, when the exterior surface of the cavity changes to
an irregular shape or the thickness of the wall is less than
the height of the triangle mesh at the transitional junctions, it
is required to adjust the meshes there. Otherwise, the GTM
model in [14] needs to be recalculated, losing its advantage.
To overcome the discontinuity of the approximation,

the discontinuous Galerkin (DG) method presents a very
appealing possibility [17]. DG method supports a vari-
ety of types and shapes of elements and nonconformal
meshes because the normal continuity is weakly satisfied and
the discontinuity is allowed across the boundary contours.
Generally, the DG method is applied with surface integral
equations (SIE) [18] expressed by introducing an interior
penalty (IP) term as in [19]. Different from it, an intu-
itive formulation is proposed in [20], which is constructed
by performing singularity extraction and removing infinite
terms. The concept of domain decomposition method (DDM)
has been embedded into the DG method recently and
successfully applied for solving scattering problems with
SIE [21], [22]. DG methods based on DDM are widely used
for PEC targets [22], homogeneous objects [23] and targets
with impedance boundary conditions (IBCs) [24].
In this paper, we propose a novel GTM method com-

bined with DG method to represent the properties of fine
interior ingredients of the cavity. Instead of surrounding
the scatterer with a completely global surface as suggested
in [15], a local virtual reference surface is set to close the
windows or openings on the cavity and partition the cav-
ity into the exterior region and interior region. The two
regions can be meshed separately. The reference surface and
the internal ingredients are considered as a whole and can
be solved with conventional SIEs with RWGs. The exte-
rior region encompassing the outer wall is treated as the
background. The DG method is applied to deal with the
boundary of junctions rather than conventional RWG basis
functions. Different from [14], the reference surface and the
external wall of the target cavity form two nonoverlapping
sub-surfaces, and the meshes along the junctions can be non-
conformal. Along the interfaces between the outer wall and
the reference surface, we discretize the surface currents with

FIGURE 1. An equivalent GTM model of the cavity.

half RWG (HRWG) basis functions [19] while using RWG
basis functions inside each sub-surface. A relevant GTM
model is obtained by capturing the scattering and radiation
information of the interior region onto the reference surface.
As long as the opening and the interior structure remain
identical, the GTM model is fixed and no recalculation is
required no matter how the exterior environment changes,
so that it can be freely applied to periodic structure cav-
ity without the necessity to ensure the mesh matching at
the interface, thus maintaining the robustness of the GTM
method. In general, the newly proposed GTM model is more
flexible and more robust than the method in [14]. The size
of the obtained GTM model is dependent on the number
of unknowns of equivalent currents on the reference surface
only. Especially when the interior region contains compli-
cated ingredients with fine meshes, the computational cost
can be significantly diminished.
This paper is organized as follows. Section II introduces

the methodology of the DG method and the derivation
of the GTM algorithm. Some numerical experiments are
shown to validate the advantages of the presented method
in Section III. Finally, some conclusions are drawn in
Section IV.

II. METHODOLOGY OF THE GTM MODEL FOR OPEN
CAVITIES
A. REFERENCE SURFACE—CAVITY JUNCTION
Consider that a monolithic microwave integrated cir-
cuit (MMIC) is set in the cavity. Once the structure of MMIC
contains many details, analyzing the scattering characteris-
tics with the conventional MoM becomes quite inefficient.
Hence, an equivalent reference surface is placed to close the
opening of the cavity plotted in Fig. 1, which strictly divides
the cavity into two parts: exterior region and interior region.
Since the reference surface is not a perfect electric conduc-
tor (PEC), the presence of electric and magnetic currents is
allowed. According to the Huygens principle, the external
excitation field interacts with the scattering field inside the
cavity via the reference surface.
The reference surface seals the windows of the target

cavity, which means that it cuts off the electric currents from
the exterior wall to the interior wall of the cavity. However,
the surface electric currents must be subject to the continuity
law at the junction. Therefore, we should pay more attention
to find an effective method to discretize the electric currents
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on the external surface and internal surface respectively and
keep the electric currents on the actual junction of the cavity
continuous.
We present to discretize the surface currents at the exterior

interface by HRWG basis function and still use the RWG
basis function at the interior interface. In Fig. 1, we introduce
four basis electric currents �Ja, �Jr, �Je and �Ji at the junction,
where triangle-A, triangle-B, and triangle-C are respectively
at the reference surface, the external surface and the internal
surface of the cavity. �Ja is an RWG basis current and denotes
the actual currents flowing from the external surface to the
internal surface of the cavity. �Jr and �Je are HRWG basis
currents and represent the currents at the jagged part of the
contour on the reference surface and the external surface of
the cavity, respectively. �Ji is RWG-typed current and stands
for the currents from reference surface to internal surface of
the cavity. In the case of the conformal meshes, we have

�Ja = �Jr + �Je + �Ji (1)

There are no magnetic currents on the surface of the
metallic cavity. Hence no magnetic currents flow across
the junction correspondingly and the boundary conditions
at the junction are similar to the conditions of PEC struc-
tures. It should be noted that these bounding triangles, like
triangle-A, are regarded as PEC materials only when tested
by these junction basis functions. When tested by other basis
functions, they are not treated as PECs.

B. DG METHOD
The DG method based on a non-overlapping, nonconformal
DDM is applied to keep the normal weak continuity of
the boundary contours between the exterior surface and the
reference surface. The exterior wall of the cavity and the
reference surface constitute two different subdomains, where
RWGs are expanded on the internal edges inside subdomains
and HRWGs are defined on the contour between subdomains,
as plotted in Fig. 2. Note that the triangle meshes at the
interface between subdomains are not strictly bound to be
conformal, nonconformal meshes are also feasible which
make it possible to control the density of meshes in different
regions. The total current on the outside of the reference
surface is expanded by hybrid basis functions.

J(�r) = �JR + �JH =
NR∑

m=1

jRmf
R
m(�r) +

NH∑

m=1

jHn f
H
n (�r) (2)

where f Rm(�r),m = 1, . . . ,NR and f Hn (�r), n = 1, . . . ,NH are
RWGs and HRWGs. NR and NH are the number of RWGs
and HRWGs, respectively. More details about HRWG basis
functions can be found in [19].
In the GTM model, the radiation field contributed by the

current �Je is a part of the incident fields for the cavity. In
this case, we need to calculate the coefficients of the cur-
rent �Je so that we encounter the noticeable line-line integral.
When the reference lines of two triangles at the bound-
ary between subdomains do not coincide, line-line integral

FIGURE 2. Half RWG basis functions are defined along the interface contour (darker
gray area) and RWG basis functions are define inside the subdomains (lighter gray
area).

FIGURE 3. The coincidence relationship of line segments. (a) Adjacent vertex.
(b) Overlapping edges. (c) Intersection.

can be accurately calculated using Gaussian numerical inte-
gration. However, when the reference lines coincide at the
contour, accumulation of charge leads to the infinite and sin-
gular line-line integral in mutual coupling or self-coupling.
Singularity occurs in vertex adjacency, the overlap between
edges and intersection. The coincidence relationship of line
segments is shown in Fig. 3. The coplanar intersection
between edges can be transformed into vertex adjacency.
When the intersection is faceted, we can apply local coor-
dinate with the origin locating at one foot of the common
perpendicular line. Therefore, line-line integral in the case of
coincidence can be converted into two basic forms: integral
of adjacent vertex and overlapping edges. We apply the strat-
egy of coordinate transformation and eliminating the integral
domain singular interval � [20] to calculate limited line-line
integrals.
The distance between the field point and source point is

represented as R = |�r − �r′|. Besides, we define that l1 =
|−−→V1V2| and l2 = |−−→V ′

1V
′
2| represent the length of the reference

line in testing basis function f Rm(�r) and source basis function
f Hn (�r′). The Green’s function in line-line integral can be
decomposed into

∫

Lm

∫

L′
n

e−jkR − 1

4πR
dL′dL+

∫

Lm

∫

L′
n

1

4πR
dL′dL (3)

where k denotes the wavenumber. The first term at the right
side of (3) is non-singular and can be solved by traditional
Gaussian numerical integration.
Consider the line-line integral of adjacent vertex, point

V1 and V ′
1 coincide, which means that the vertex V1 is both

an observation point and source point, so that the second

term of (3) is singular. Denote l3 = |−−→V2V ′
2|. By trans-

forming the coordinate, the second term can be explicitly
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evaluated as

I1 =
∫

Lm

∫

L′
n

1

R
dL′dL = l1 ln

l2 + l3 − l1 cos α

l1(1 − cos α)

+ l2 ln
l1 + l3 − l2 cos α

l2(1 − cos α)
(4)

where the singularity of line-line integral is canceled out.
As for the line-line integral of the overlapping edge, we

remove the infinitely small area � near the singular points.
In this way, the line-line integral is bounded. The line integral
I1 can be rewritten as

I1 ≈ 2l1(� − ln � − 1) (5)

where we have lim�→0(�−ln �−1) = ∞. � can be treated
as a loosen coefficient that converts the infinitely large dou-
ble contour integral into bounded integral. By controlling
the value of �, the local numerical precision of the singular
integral can be controlled.
Since all the singular line-line integral can be transformed

into the above two basic forms, the singularity is picked out
analytically. Decomposing and meshing the curved surfaces
separately inevitably lead to gaps, overlaps or intersections.
But the proposed DG method can still analyze these situa-
tions directly, so that it provides great convenience for mesh
generation and local densification by appropriately loosening
the continuity along the boundary between subdomains.

C. FORMULATION DERIVATION OF GTM
To simplify the derivation of the GTM method, a simple
metallic cavity is shown in Fig. 4, where a virtual reference
surface is placed to close the opening of the cavity. Apart
from the preceding work [25], a scattering source �Is is added
inside the cavity to indicate the presence of the internal
source. Equivalent electric and magnetic currents flow on
the reference surface, according to the equivalence theorem.
In Fig. 4, �Einc and �Hinc indicate the natural incident wave.
�JexR and �Mex

R on the outside plane of the reference surface
SR, and �JinR and �Min

R on the inside plane of the reference
surface SR make contributions to the fields in the external
and internal region separately. Due to the metal surface of
the cavity, there are also inductive currents on the exterior
wall Sex and interior wall Sin, which are represented by �JexW
and �JinW . The current �Je from the exterior wall to the reference
surface, and the current �Jr from the reference surface to the
exterior wall, indicate currents at the external transitional
interface. The current �Ji exists from the reference surface
to the interior wall at the internal interface. The processing
of three currents at the junction has been mentioned in the
previous subsection. The rest electric and magnetic currents
are discretized by RWGs. In the subsequent derivation, we
use �Jin to represent the combined current of �Ji and �JinW .
Furthermore, currents �Jex/inR and �Mex/in

R exist only on the
reference surface and magnetic current does not flow across
the boundary of the reference surface.
According to the equivalent principle, when the observa-

tion points are outside the cavity, the total electromagnetic

FIGURE 4. A PEC cavity for the formula derivation.

field contributed by equivalent electric and magnetic currents
can be denoted as following integral equations:

�Eex(�r) = ηexLex
(�Jex

R

)
− Kex

( �Mex
R

)
+ ηexLex

(�JexW
)

+ ηexLex
(�Je

)
+ ηexLex

(�Jr
)

+ �Einc (6)

�Hex(�r) = 1

ηex
Lex

( �Mex
R

)
+ Kex

(�Jex
R

)
+ Kex

(�JexW
)

+ Kex

(�Je
)

+ Kex

(�Jr
)

+ �Hinc (7)

When the observation points are set inside the cavity, the
total electromagnetic field can be described as:

�Ein(�r) = ηinLin
(�Jin

R

)
− Kin

( �Min
R

)
+ ηinLin

(�Jin
)

+ ηinLin
(�Is

)

(8)

�Hin(�r) = 1

ηin
Lin

( �Min
R

)
+ Kin

(�Jin
R

)
+ Kin

(�Jin
)

+ Kin

(�Is
)

(9)

where η represents the intrinsic impedance and the subscripts
indicate the exterior and interior regions. The two operators
L and K are written as:

Li
(�X

)
= −jki

∫

S

[
�X + 1

k2
i

∇
(
∇′ • �X

)]
Gi

(�r, �r′)dS′ (10)

Ki

(�X
)

= −
∫

S

�X × ∇ Gi
(�r, �r′)dS′ (11)

where subscript i denotes the exterior or interior regions
of the cavity. Gi(�r, �r′) represents the space Green’s
function of the different areas. ki is the space wave
number.
Consider that the background medium of exterior and

interior regions is free space so that we can easily obtain
�JexR = −�JinR and �Mex

R = − �Min
R . We define �JexR = �JR and

�Mex
R = �MR. In this way, operators Li and Ki can be uni-

fied into operators L and K. ηex and ηin are replaced
by η, and ki is rewritten by k as well in the following
derivation.
The tangential components of the electromagnetic fields in

the interior and exterior regions meet the boundary continuity
conditions. Therefore, on the reference surface, the set of
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equations can be constructed as:
[
−2ηL

(�JR
)

+ 2K
( �MR

)
+ ηL

(�Jin
)

+ ηL
(�Is

)]
|tan

=
[
ηL

(�JexW
)

+ ηL
(�Je

)
+ ηL

(�Jr
)

+ �Einc
]
|tan, ∀�r ∈ SR (12)

[
−2

η
L

( �MR

)
− 2K

(�JR
)

+ K
(�Jin

)
+ K

(�Is
)]

|tan

=
[
K

(�JexW
)

+ K
(�Je

)
+ K

(�Jr
)

+ �Hinc
]
|tan, ∀�r ∈ SR (13)

Then the RWGs on the reference surface are selected as
testing basis function so that the equations (12) and (13)
can be transformed into the matrix form:

ZR • X−
R + A • Jin + D • Is = X+

R + Zr • Jr (14)

where X−
R consists of the expansion coefficient of �JR and �MR

that are the rotated tangential components of the scattering
magnetic field and electric field on the reference surface.
X+
R indicates the tangential components of the total incident

fields, which include the scattering from the outer wall of the
cavity and the external excitation. Jin denotes the expansion
coefficient of the current on the interior surface including
the inner junctions. Jr expresses the expansion coefficient
of the current that is discretized by the HRWGs on the
sawtooth portion of the reference surface. ZR represents the
self-impedance matrix of the reference surface. A stands for
the coupling matrix between the reference surface and the
interior wall. D represents the field transmission matrix onto
the reference surface contributed by an internal source Is.
Besides, the matrix Zr indicates the coupling matrix between
the reference surface and the jagged part of the edge on the
reference surface. The DG method is applied here to keep
the weak current continuous on the border. The matrix Zr
can be represented as:

(Zr)i,j =
[
ZERHi,j

ZMRHi,j

]
(15)

The elements of the matrix can be written into:

ZERHi,j = −jωμ0

∫

Sm

�f Rim (�r) ·
∫

S′
n

�f Hjn
(�r′)G0

(�r, �r′)dS′dS

− 1

jωε0

∫

Sm
∇s · �f Rim (�r)

∫

S′
n

∇′
s · �f Hjn

(�r′)G0
(�r, �r′)dS′dS

+ 1

jωε0

∫

Sm
∇s · �f Rim (�r)

∫

L′
n

�tHjn · �f Hjn
(�r′)G0

(�r, �r′)dL′dS

(16)

ZMRHi,j = −
∫

Sm

�f Rim (�r) ·
∫

L′
n

�f Hjn
(�r′) × ∇G0

(�r, �r′)dL′dS (17)

where μ0 and ε0 stand for the permeability and the per-
mittivity in the free space separately. �tn indicates the unit
normal vector on the boundary contour Ln.

As for the inner metallic surface of the cavity, according
to the boundary conditions of PECs, the electric field integral
equation is expressed as:
[
ηL

(�JR
)

− K( �MR) − ηL
(�Jin

)
− ηL

(�Is
)]

|tan = 0, ∀�r ∈ SinPEC

(18)

After the testing procedure by the RWGs on the interior
surface, the formula (18) can be converted into:

C • X−
R + B • Jin + E • Is = 0 (19)

where B expresses the self-impedance matrix of the interior
metal surface including the internal interface. C represents
the coupling matrix between the interior surface and the
reference surface. Similarly, E denotes the field transmission
matrix from the internal source Is to the interior surface.
To eliminate current coefficients Jin by substituting (19)

into (14), the GTM model of the open-end cavity can be
represented as:

X−
R = T • X+

R + M • Jr + N • Is (20)

The reference surface is constructed by NR RWGs and NH
HRWGs. The current at the interior interface is discretized
by NH RWGs as well. In this way, the 2NR × 2NR matrix T
is defined as GTM, which is applied to denote the responses
to the total tangential incident fields on the reference sur-
face. And the 2NR ×NH matrix M stands for the scattering
fields contributed by the current �Jr. The 2NR × 1 matrix N
denotes the mapping matrix from the internal excitation to
the reference surface. When there are Ni sources inside the
cavity, N is a 2NR × Ni matrix.

The scattering fields of the GTM model include three
parts: the responses to the total tangential incident fields on
the reference surface, the generating from the current at the
sawtooth portion of the boundary on the reference surface,
and the mapping from radiating fields of internal excitations
to reference surface. The matrices T, M and N only depend
on the internal ingredients and the reference surface. Their
dimension is determined by the meshes on the reference
surface only. Therefore, the size of the GTM can be much
smaller than the size of the interior components, especially
when the complicated internal compositions are put in the
cavity.
The GTM model can describe the radiation and scat-

tering properties of the cavity with complicated structures,
such as DRA, MMIC, and multi-stack chips, and make the
information interact only on the reference surface. Moreover,
as long as the interior structures keep fixed, the GTM model
can be conveniently transplanted no matter how the exterior
environment transforms, which can significantly reduce the
computational cost.

D. GTM MODELS OF MULTI-CAVITIES SYSTEM
Consider a complex array system consisting of multiple open
cavities with fine interior structures. The individual cavity
can be independently constructed as a GTM model. In this
way, when analyzing the scattering characteristics of a spe-
cific cavity, radiation from other cavities can be considered
as a part of the incident field. The complex system is sim-
plified in Fig. 5. M open cavities are exposed to external
surroundings. The reference surfaces are set to completely
seal the apertures on all cavities and respectively extract
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FIGURE 5. GTM models of the multi-cavities system.

the GTM models. The coupling between different cavities is
transformed into the mutual coupling between GTM mod-
els. X−

m indicates the rotated tangential components of the
scattering field of the cavity m on the reference surface.
In addition, the field transmission matrix Dmn is applied to
denote the coupling influence between GTM model-m and
GTM model-n, which is introduced in detail in [15].
Taking the cavity m in Fig. 5 as an example, the tangen-

tial components of the whole incident fields on the relevant
reference surface can be described as:

X+
m =

M∑

n=1,n 
=m
Dmn • X−

n + Dm0 • J0 +
M∑

n=1

Dn
me • Jne

+
M∑

n=1,n 
=m
Dn
mr • Jnr+Xincm (21)

where Dm0 represents the field coupling between the refer-
ence surface of the GTM model-m and the exterior metallic
surfaces of the cavities excluding the outer interfaces. J0
denotes the set of expansion coefficients of the induced cur-
rent on the exterior metal wall of all the cavities in the
complex system, which do not contain the current at the outer
interfaces. DmeJe and DmrJr stand for the fields generated
by current Je and Jr mapped onto the reference surface. Xinc

m
represents the incident electromagnetic wave of the natural
excitation. In a word, the total incident fields for a single
GTM model come from the scattering fields of other GTM
models, the electromagnetic field from each interface and
the outer wall of the cavity, and the external excitation.
In the exterior region of the multi-cavities system, the

total electric fields devoted by the total electric and magnetic
currents can be described as:

�Eextotal(�r) =
M∑

m=1

(
ηL

(�Jexm,R

)
− K

( �Mex
m,R

))
+ ηL

(�J0

)

+
M∑

m=1

ηL
(�Jm,e

)
+

M∑

m=1

ηL
(�Jm,r

)
+ �Einc (22)

On the outer surface SexPEC and the jagged parts at
all interfaces SePEC and SrPEC, the equation is established

FIGURE 6. Identical interior cubic scatterer inside different outer surfaces.

according to the boundary condition of PECs:

�Eextotal(�r)|tan = 0, ∀�r ∈ SexPEC or SePEC or SrPEC (23)

Choosing the RWGs on the SexPEC, and the HRWGs on
the SePEC and SrPEC as the testing basis functions separately,
we can obtain all matrix forms of �J0, �Je and �Jr. By solv-
ing these matrix forms with (20), (21) concurrently, we can
calculate the whole rotated tangential components of the
scattering magnetic field and electric field on each reference
surface, and the expansion coefficients of the currents on
the exterior surfaces of multi-cavities. Then all current dis-
tributions in the system can be obtainable. Compared with
the MoM when the complex compositions are inside the
cavity and discretized by meticulous meshes, the dimension
of the GTM model representing the electromagnetic char-
acteristic of the internal region depends on the meshes of
the GTM reference surfaces only, so that it can be much
smaller than the size of the internal structure. Hence, the
number of unknowns in the complex system can be obvi-
ously decreased. Especially for the problem of the periodic
cavity arrays system where the interior region of each cav-
ity is identical, the GTM model only needs to be calculated
once and can be reused for remaining cavity arrays to char-
acterize the scattering of internal structures. In the process
of reusing, it is not necessary to concern about the mesh dis-
cretization at the interface, contributed by the DG method.
In this way, calculating the scattering of complex periodic
cavity systems becomes simple and convenient.

III. NUMERICAL RESULTS
Several numerical examples are described to demonstrate the
efficiency and feasibility of the proposed GTM method in
this section.

A. CAVITY WITH INTERIOR SCATTERER
In the following, the scattering of a PEC cavity with an
internal cubic metallic scatterer is analyzed. The GTM model
can be reused no matter how the external environment varies,
as long as the interior composition of the cavity remains
identical. The same interior cubic scatterer inside different
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FIGURE 7. RCS of different cavities with same interior cubic scatterer.
(a) Rectangular cavity (b) Pyramidal cavity.

outer surfaces is plotted in Fig. 6. Consider that an incident
plane wave along the z-axis with an amplitude of 1 V/m
irradiates on the cavity, and has a frequency of 150 MHz.
Firstly, we study the case where the outside is a rectangular
cavity and apply the mesh length of λ/20 to expand the
whole surface of the cavity, so that the cavity is constructed
by the conformal meshes with 430 and 298 RWGs on the
external surface and internal structure, separately. The refer-
ence surface is put to describe the scattering characteristics
of the internal composition and is discretized by 43 RWGs.
On the view point of the DDM, the outer wall and the refer-
ence surface are two subdomains. In the case of conformal
meshes, there are 16 coincident interface contours between
two adjacent subdomains, so that the inner and outer tran-
sitional junction are separately expanded by 16 RWGs and
32 HRWGs.
In the DG solution, we set ln � = −10 at first.

Fig. 7(a) illustrates the RCS results obtained by the MoM,
the method in [14] and the GTM model combined with the
DG method, respectively. It is obvious that the proposed
GTM method has excellent agreement with the conventional
MoM and previous work in [14]. This can be explained that
43 RWGs on the reference surface can validly represent
the electromagnetic information of the internal composition
that is expanded by 298 RWGs. Moreover, the dimension
of the transition matrix in the DG-combined GTM model
is the same as that in [14], both are 2N × 2N, where N is
the number of the basis functions on the reference surface.
Since HRWG basis functions are used only at the junctions,
the impact on the condition number of the corresponding
coefficient matrix is not significant.
To investigate the influence of the loosen coefficient �

of (5) for the results, the value of − ln � varies from 0 to
20, and the relative root mean square error is applied which
can be represented as:

Error = 20 log(‖X − Y‖/‖Y‖) (24)

where X and Y can be the surface currents or the RCS results,
and ‖ · ‖ means l2-norm. Then we find that the currents on
the exterior wall of the cavity with various values of − ln �

have almost the same accuracy, where their relative errors
are around −57.4 dB compared with the MoM solution. In

TABLE 1. Runtime for different methods.

general, it is recommended to choose ln � = 0 for generating
GTM models.
To verify the portability of the GTM model, we change the

shape of the external region into a pyramid and keep internal
structure invariant. The geometrical structure is drawn in
Fig. 6.
The exterior wall is expanded by 499 RWGs and

16 HRWGs. For comparison with the method in [14], con-
formal meshes are used but those RWGs across the junctions
are split to HRWGs. The RCS results obtained by the MoM
solution, the method in [14], and the proposed method are
compared in Fig. 7(b), which is in good agreement with
the largest mismatch of less than 0.15 dB. Table 1 illustrates
the comparison for the runtime via various methods, where
the MoM is used to directly calculate the RCS, while for the
proposed method because the GTM model obtained from the
previous example can be reused, its runtime does not contain
the GTM extraction time, which is the most efficient in this
example, and the number of unknowns to be solved is much
smaller than the other two methods. Moreover, in [14] the
GTM model cannot be reused when dealing with the case
where the jagged area of the external surface at the interface
is not on the same plane as in the previous example. As here,
the rectangular cavity is replaced by a pyramidal cavity, then
the GTM model in [14] needs to be reprocessed, so that its
runtime includes the time to re-extract the GTM model.
However, the presented method directly cuts off the rela-
tionship between the external region and the internal region
of the cavity. Compared with the method in [14], the overall
time via the proposed method that includes the time to extract
the GTM model and the time to solve the system is slightly
slower because the calculation of the line-line integral and
the extraction of singular points on the boundary contour are
added. But it can save the cost of manually adjusting the
mesh and avoid the risk of recalculating the GTM model.
Therefore, no matter how the external geometry of the cav-
ity varies, as long as the internal structure is the same, the
recalculation problem can be effectively solved.
To investigate the influence of the meshing density on the

extraction of the scattering properties of the interior struc-
ture, the mesh length of the exterior and interior surface of
the rectangular cavity is kept as λ/20, and the mesh density
is changed on the reference surface only. Then we obtain the
RCS results in each case and compare them with the MoM
solution in λ/20. Table 2 demonstrates some comparisons
in the different number of the RWGs on the reference sur-
face, where the relative errors of the RCS results are defined
according to (24). It can be seen that as the mesh becomes
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TABLE 2. Influence of the mesh density on the reference surface.

FIGURE 8. (a) The metallic cavity coated with a double-layer medium. (b) Top view
and front view.

denser, the relative errors between the two methods for cal-
culating the scattering of the rectangular cavity decrease,
which means that the ability of the GTM model to grasp the
internal scattering characteristics is enhanced. In addition,
the total time of operation using the MoM is 76.151s, which
is larger than each case of the GTM method in Table 2.

B. CAVITY COATED WITH DIELECTRIC
The electromagnetic scattering problems of coating tar-
gets such as coated absorbing materials and plasma have
received widespread attention. Stealth capability has become
an important indicator for measuring the combat performance
of weapons, and coating the absorbing material can reduce
its RCS. The proposed method also works in dealing with
coating targets.
Nano-absorbing material refers to ultra-fine material with

a particle size between 1-100 nm. One of the most popular
SiC lossy material currently studied can be classified as an
isotropic medium. In a certain frequency band, the medium
parameters are εr = 8.0 − j3.5, μr = 1. We apply a metallic
cavity coated with a double-layer medium. Firstly, the bottom
wall of the cavity is coated with a medium whose relative
permittivity is 4. Then the lossy materials are coated thereon.
The model of a complex cavity with double-layer coated
media is analyzed in Fig. 8(a) and the details of the coated
dielectric are drawn in Fig. 8(b). On both sides of the double-
layer medium, smooth surfaces are transitioning to connect
with the metal wall of the cavity. The operating frequency
is 300 MHz and the incident wave is still along the z-axis.
Inside the cavity, the DG method is applied to deal with the

discontinuity of current between the planes. Adopting DDM
as mentioned in Section II-B, we consider the two layers of
different media, the metal area covered by the media, and the

FIGURE 9. RCS of the cavity coated with a double-layer medium.

FIGURE 10. The distribution of the absolute value and direction of the Poynting
vector in the finite plane with −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, z = 0.5. (a) The MoM
method (b) The GTM method.

inner uncoated surface of the cavity as different subdomains.
Within the subdomain, the RWG basis functions are defined
for the discretization of electric and magnetic currents. While
on the boundary portion, the HRWG basis functions are
used. In this way, when only a small number of unknowns
is added, the continuity of the current can be cut off to ensure
computational accuracy. In addition, the dielectric and the
internal metal surface are regarded as different boundary
conditions, and the rest of derivations is basically identical.
The exterior surface and reference surface are discretized

by 924 and 97 RWGs. The internal and external layers of
the dielectric are expanded by 130 RWGs and 28 HRWGs,
181 RWGs and 28 HRWGs respectively. Moreover, there are
97 RWGs and 22 HRWGs expanded on the surface coated
by the media, and 372 RWGs and 22 HRWGs defined in the
uncoated inner area. That is, there are a total of 780 RWGs
and 100 HRWGs in the interior region, while there are only
97 RWGs on the reference surface.
In this way, the total number of unknowns in the system

is much less than that required by the traditional MoM
method. The scattering results obtained by Altair FEKO
2017, MoM and the GTM models are shown in Fig. 9 with
satisfactory accuracy. Moreover, we select a finite plane with
−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, z = 0.5 and sample on the surface
to calculate the absolute value and direction of the Poynting
vector at each point, which is compared with results obtained
by the MoM in Fig. 10. It can be seen that the distribu-
tions of the Poynting vector are similar without noticeable
differences between the two results. Therefore, the electro-
magnetic information of the complex double-layer coated
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FIGURE 11. A metallic block with four identical cavities, where a bowtie antenna is
placed inside each cavity.

medium structure inside the cavity can be accurately mapped
onto the reference surface.

C. PERIODIC CAVITY ARRAY STRUCTURE
For the periodic cavity array, the GTM model only needs to
be calculated once and the other cavities can apply this GTM
model repeatedly. With the help of the DG method, it is need-
less to consider the outer shape of the cavity and the meshing
situation when reusing the GTM model. Besides, if two mod-
ules in the system have the same relative displacement, their
field transmission matrices are the same [26]. Hence, the
GTM method is suitable for processing the periodic cavity
system.
A metallic block with four identical cavities is plotted in

Fig. 11, where a bowtie antenna is placed inside each cavity.
Without the exterior incident wave, the system operates under
the interior source only at the feeding point of the bowtie
antenna. All the cavities share the same exterior wall of the
metallic block. This periodic cavity structure can be used
both as a reflector of an antenna and as isolation between
ports. The details of the bowtie antenna are also shown in
Fig. 11. The delta-gap voltage source is loaded on the feed
line. The operating frequency is set to 1.5 GHz.
One GTM reference surface is expanded by 225 RWGs

and 36 HRWGs. To be able to reuse this GTM model in
all cavities of the metallic block, we force the triangular
meshes on each reference surface to keep identical. The
interior surface and the bowtie antenna of each cavity is
discretized into 748 RWGs, and the outer surface is expanded
by 2214 RWGs and 120 HRWGs.
From Fig. 12, it is clear that the normalized directivity

(xoz plane) of the H-plane at 1.5 GHz calculated by the
GTM method is consistent with the result obtained by the
MoM. It is seen that the scattering of the interior ingredients
represented by 748 RWGs is extracted by the GTM model
discretized into 225 RWGs in effect. Under the excitation
of the delta-gap voltage source, the induced current inside
the cavity is extracted onto the reference surface in the form
of a rotated tangential component. That is, the GTM model
conveys the radiation information about the internal voltage
excitation.

FIGURE 12. Normalized Radiation patterns of antennas in the H plane at 1.5 GHz.

Table 3 lists some comparisons between the MoM and
the GTM method. The total quantity of unknowns in this
periodic cavity system by the proposed method is 56.8%
of the number of unknowns needed in the conventional
MoM. Moreover, the proposed method takes a total of
1443.68s, including the time to obtain the GTM model and
the time to solve the multi-cavities system. It saves 66.27%
of the time compared with the MoM. It can be expected that
as the quantity of the periodic cavities rises, the GTM method
will be more rapid and efficient than the MoM because the
GTM model can be directly reused to those additive cavities.
In the problem of the multi-cavities system, the

information between different cavities is transmitted to each
other through the reference surface in the GTM model,
instead of the direct coupling in the conventional method.
Therefore, in analyzing the coupling effect of the complex
array system, with the use of the DG method, the calculation
efficiency and the applicable range of the proposed method
have been greatly improved.

D. AIRCRAFT INLET WITH MULTI-WINDOWS
In this section, we show an aircraft inlet model. The aircraft
inlet is a typical cavity structure. After multiple reflections
of the radar wave in the inlet, it is one of the main strong
scattering sources for the forward direction of the aircraft.
The aircraft inlet has an air inlet and an air outlet so that it
can be considered as a promotion form of the cavity with
multi-windows.
Consider a simple model of an aircraft inlet with tur-

bine blades and connecting devices plotted in Fig. 13(a).
The details of the model are shown in Fig. 13(b) and (c). The
overall length is 6.5 m and the wall thickness is 0.2 m. The
right elliptical inlet has a long axis of 1.3 m and a short axis
of 0.65 m. The left circular inlet has a radius of 1.5 m and
the arc length of the turbine blades is 2.8 m. Besides, the
connecting shaft is 0.15 m. The interior and exterior planes
of the pipeline model are spline surfaces.
Although the turbine blades are located inside the inlet

port, since the blades and the rotating shaft will rotate under
the operating state, the condition required by the GTM
method that the inner structure of the cavity does not change
is not satisfied. Therefore, we place the left reference sur-
face on the connecting shaft and put the turbine outside the
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FIGURE 13. (a) The aircraft inlet model. (b) The geometrical size of the cavity at the
front view. (c) The geometrical size of the cavity at the left view.

TABLE 3. Comparison for different methods.

FIGURE 14. RCS of the aircraft inlet model in the xoz plane and xoy plane.

reference surface as a part of the exterior region. The right
reference surface is set to close the elliptical inlet. Moreover,
the model is irradiated by an incident plane wave of 80 MHz
along x-axis.
We regard two reference surfaces as a whole which are

meshed by 331 RWGs and 52 HRWGs. The exterior wall of
the cavity containing turbine blades and the partial connect-
ing shaft is discretized by 12342 RWGs and 81 HRWGs. The
inner structure including the turbine bracket is constructed
by 6928 RWGs.
Fig. 14 compares the RCS results of the model obtained by

both conventional MoM and the GTM method. It is attractive
that the results calculated by the GTM method are practi-
cally almost identical to the reference solution in both xoz

plane and xoy plane. The traditional method requires calcu-
lating the impedance matrix of the entire system when the
blade is rotated by a certain angle. As for the proposed
method, the reference surface separates the system into
a dynamic area and static area. When calculating the scat-
tering problem of the entire system, it is only necessary
to update the impedance information of the dynamic area,
which can reduce much complexity with the fine structure
inside the static area.
Once the GTM model is obtained, with a combination

of the DG method we can easily transplant it into the same
inlet model of different aircrafts. Not limited to the inlet, the
proposed GTM method can be applied to solve the scatter-
ing problem of porous cavities and accurately describe the
radiation information of the interior region of the cavity.
Although MoM is used in the proposed formulation, it is

worth noting that other methods can also be applied to map
the electromagnetic scattering characteristics of the internal
structure onto the reference surface. For example, the mode
matching method may be more efficient for long cavities
with cascaded regular waveguides.

IV. CONCLUSION
In this paper, a GTM model combined with the DG method
is presented for dealing with the scattering properties of
open-ended cavities. An artificial reference surface is put to
seal the cavity into the surface-perfect structure and separate
the cavity into an exterior dynamic region and interior static
region. The GTM model can precisely capture the radiation
and scattering characteristic of the interior ingredient of the
cavity. Applying the DG method based on DDM makes it
convenient to transplant the GTM model into different exte-
rior environments, even into rotating environments, as long
as the inner region of the cavity keeps identical. Meanwhile,
with the help of nonconformal mesh, the control of mesh
density in different regions can be realized. Numerical exam-
ples demonstrate the high feasibility and excellent precision
of the presented GTM method under the conditions of both
conformal and nonconformal meshes.
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